

Arab Republic of Egypt

EDICT OF GOVERNMENT

In order to promote public education and public safety, equal justice for all, a better informed citizenry, the rule of law, world trade and world peace, this legal document is hereby made available on a noncommercial basis, as it is the right of all humans to know and speak the laws that govern them.

ES 4762 (2005) (Arabic): GREY IRON PIPES
SPECIAL CASTINGS AND GREY IRON PARTS FOR PRESSURE MAIN LINES
مواصفات القياسية العربية

م ق م : 2672/2005
ISO 13/1978

مواسير الزهر الرمادى والمسبوكات الخاصة
للخطوط المعرضة للضغط

جمهورية مصر العربية
الهيئة المصرية العامة للمواصفات والجودة
تاريخ الاعتماد: 2005/4/17

كل الحقوق محفوظة للهيئة، ما لم يحدد خلاف ذلك، ولا يجوز إعادة إصدار أي جزء من المواصفة أو الانتفاض به في أي شكل وسيلة إلكترونية أو ميكانيكية أو خلافها ويتضمن ذلك التصوير الفوتوغرافى والميكروفيلم بدون تصرح كتابى مسبق من الهيئة أو الناشر.

الهيئة المصرية العامة للمواصفات والجودة

العنوان: 16 ش تدريب المتدربين - السواج - الأميرا.

تليفون: 2845524

فاكس: 28455004

moi@idsc.net.eg بريد الكتروني:

www.eos.org.eg موقع الكتروني:
مق م ٤٧٦٢/٢٠٠٥
ايزو ١٣ /١٩٧٨
مقدمة

المواصفة القياسية المصرية رقم ٤٧٦٢/٢٠٠٥ متماثلة فنيا مع المواصفة القياسية الدولية الخاصة بمواضيع الزهر الرمادى والمسوبات الخاصة للخطوط المعرضة للضغط.

وتلغى وتحل محل المواصفة القياسية المصرية رقم ١٩٩٥/١٠ والمواصفة القياسية المصرية رقم ٢٩٣١/١٩٩٦ وتحل محلهما.

قام بإعداد هذه المواصفة لجنة التوافق رقم (٣/١) الخاصة بالمنتجات الحديدية.
موادل الزهر الرمادي والمسبوكات الخاصة للخطوط المعرضة للضغط

١- المجمال

تختص هذه المواصفة بتحديد خصائص المنتجات التالية

أ - مواسير الزهر الرمادي المصنعة بأحد الطرق الآتية:

* السبائك بطريقة الطرد المركزى في قوالب معدنية.
* السبائك بطريقة الطرد المركزى في قوالب رملية.
* السبائك الرأسية في قوالب رملية

ب - المسبوكات الخاصة والإجراءات الأخرى المصنعة من الزهر الرمادي

وتطبق هذه المواصفة على المواسير والمسبوكات الخاصة ذات الرأس والذيل أو ذات الفلاشات المعرفة

ب هذه المواصفة

كما تطبق على المواسير والمسبوكات الخاصة ذات الأنواع الأخرى من الوصولات والتي تتوافق أبعادها

ومع متطلبات هذه المواصفة فيما عدا تلك التي ترتبط أبعادها بالوصلات

ولألا تطبق هذه المواصفة على المواسير الزهر المستخدمة للصرف الصحي للمباني.

٢- مواصفات عامة

١/ مقدمة

٢/١ / ٢٠١٠ هناك نوعين من وصلات الرأس حيث تكون الخرزة المركزية عبارة عن جزء من داخل الرأس أو تكون مسبوبة على الذيل من الخارج ولا تسمح عملية السبائك بطريقة الطرد المركزى في قوالب معدنية بسباكة الخرزة على ذيل الماسورة فتشتم الوصلات كلا النوعين لأن كليهما ما زال يستعمل ويمكن أن يحل أحدهما محل الآخر.

٢/٢ عادة ما تكون الفلاشات مشغولة وذلكل إذا تم أنتاجها في قوالب بطريقة دقيقة.

٢/٣ / المسبوكات الخاصة عمو ما يكون لها مقاومة كبيرة للضغط الداخلى لجميع الظروف المستخدمة وهناك طرق مختلفة متاحة لتغقيتها في حالات إذا ما استوجب تطبيق ضغط تشغيل مرتفع على المسبوكات التي لها عدد كبير من الفروع والتي يكون فيها الأجهادات على المعدن مهمة.

٢/٤ التفاوت المسموح به لأبعاد الرأس يكون ثانيا بالنسبة لفراغ الفلقنة العادى.
التفاوت المسموح به للأبعاد الرأس يكون أقل من التفاوت المسموح به لأبعاد البند حيث أن رأس المواسير لها تجنب أكبر من تخانة البند، ولذا تكون أكثر صلاحية منه.

تم حساب كثافة الزهر المرمدي على أساس 150كم/م3 وهذه القيمة تقع بين القيم المعمول بها في مختلف الدول والتي تراوح بين 750, 760.

الإطار المختلطة تصنع عمومًا من تخانات مناسبة لأعلى ضغوط التشغيل المستخدمة.

في بعض الحالات قد يحدث أن تتعرض المسابوك لضغط تشغيل يودي إلى عدم كفاءة معامل الأمان مقارنة بضغط اختبار التشغيل - في هذه الحالات فإن على الخرائط اختصار المنتج بذلك لعمل زيادة مناسبة في تخانات وضغط اختبار

2 أنواع الواصلات:

2/1 المواسير ذات الرأس والمسابوك الخاصة المستخدمة وصلات الرؤوس يمكن أن تزود بحلة مركزية في الرأس وفي هذه الحالة تورد بنزيل له نهاية مسطحة وكبديل يمكن أن تكون الرأس بدون حلقية مركزية وفي هذه الحالة أما أن يكون الذيل ذو نهاية مسطحة أو ذو فريزة مسحة أو مرقة بالضغط على الساخن.

2/2 يتم تشغيل الفلاتشات وتكون أبعادها متواصلة مع الأبعاد المحددة في الجداول بهذه المواصفة.

2/3 في حالة طلب مواسير ومسابوك خاصة بوصل من غير الانواع المذكورة بهذه المواصفة.

فإن أبعاد وخصائص الوصلة تكون هي المطابقة على هذه الوصلة.

3/1 المسابوك الخاصة

المسابوك الخاصة لها التنافات الموضحة بالجداول المذكورة بالمواصفة فيما عدا إذا كانت ظروف التشغيل تستدعي بعض التغييرات هذه التغييرات يمكن أن تكون على شكل زيادة في التنافات أو دعم أو مسابير أو وسائل أخرى يقترحها المنتج ويوافق عليها المشتري.

4/1 العلامات المميزة

يجب أن يطبع بالطبع على كل مسورة أو مسابوك خاصة: علامة المصدر - القطر الدوائي - الخصائص الرأسية (أن أمكن) ويكون موضوع العلامات كالآتي:

* على وجه رأس المسورة المصنعة بطريقة الطرد المركزية في قالب معدني
* خارج رأس المسورة أو بدن المسورة المصنعة بطريقة الطرد المركزية في قالب رسلي
* خارج رأس المسورة أو ناحية نهاية البند للمسورة المصنعة بالسياق الرأسية في قوالب رملية
* على بدن المسابوك الخاصة

ويمكن الكتابة بالطابع على مبسطة أو أى علامات أخرى يطلبها المشتري.
5/2 الزهر الرمادى المستخدم في الصناعة

يجب أن يكون الزهر الرمادى المستخدم في صناعة المواسم والمسبوكيات الخاصه من نوعية جيدة ويتم تجهيزه بعناية المنتج في فرن مناسب ويصنع من خام جيد وبصورة جيدة أو خام جيد مع خردة صلب وإضافات من مواد جديدة مناسبة لطريقة الأنتاج مع استعداد أي خامات زينة الجودة - واعد الكرس يظهر الزهر حبيبات رمادية متماسكة ومنتظمة.

6/2 جودة المواسم والمسبوكيات الخاصة.

6/2.1 تسحب المواسم والمسبوكيات الخاصة من القوالب بعد أخذ جميع الاحتياطات اللازمة لمنع حدوث عيوب الألوان والأنكماش الضارة بالجودة.

6/2.2 يشترط أن تكون المواسم والمسبوكيات الخاصة سليمة وحالياً من العيوب سواء السطحية أو غيرها.

6/2.3 لا يتم علاج العيوب بلحم المونة أو المعجنون دون موافقة مسبقة من المشتري أو من يمثله وينطبق ذلك أيضا على كل التسربات بالقفطة.

6/2.4 لا ترفض المواسم والمسبوكيات الخاصة التي بها عيوب بسيطة مرتبطة بظروف التصنيع ولا يؤثر على استخدامها.

6/2.5 يجب أن تكون المواسم والمسبوكيات الخاصة قابلة للقطع والتمييز والتشغيل على الماكينات.

6/2.6 في حالة التنازع تعتبر المواسم والمسبوكيات الخاصة مقبولة إذا كانت الصلاحة المقاومة على منصف التخانه لا تتعدي 215 برميل ولا تزيد الصلاحة على سطح المواسم المسبوكة بالطرد المركزي في قوالب معدنية عن 320 برميل.

3- التفاوتات في الأبعاد

3.1 التفافوت في قطر الخارجي للبندين - قطر الداخلي للرأس - عمق الرأس

جدول (1) التفاوتات بالنسبة للرأس حيث:

DN ترمز للقطر الأسمى بالمليمترات

DN ترمز إلى قرار الفلفلطة لوصلة بالمليمترات (F = 0.003 DN)

DN ترميز إلى قرار الفلفلطة لوصلة بالمليمترات (F = 0.003 DN)
جدول (1)

<table>
<thead>
<tr>
<th>التفاوت</th>
<th>قطر الاسمي</th>
<th>البعد</th>
</tr>
</thead>
<tbody>
<tr>
<td>±1/2 F = ± (4.5 + 0.0015DN)</td>
<td>جميع الأقطار</td>
<td>قطر الخارجي للبنب</td>
</tr>
<tr>
<td>± 1/3 F = ± (3 + 0.001 DN)</td>
<td>جميع الأقطار</td>
<td>قطر الداخلي للرأس</td>
</tr>
<tr>
<td>± 5DN</td>
<td>حتى ويشمل 600DN</td>
<td>عمق الرأس</td>
</tr>
<tr>
<td>± 10DN</td>
<td>أكبر من 600DN حتى ويشمل 1000DN</td>
<td></td>
</tr>
</tbody>
</table>

أكبر وأصغر فراغ للوصول الناتج عن هذه التفاوتات لا يؤثر بشكل سلبي على توصيل المواسير والمسابقات الخاصة.

3/2 التفاوت في التخانة

بحدد جدول (2) التفاوت في تخانة الجدار وتخانة الفلانشة حيث:

- ترمز إلى تخانة الجدار القياسية بالمليمترات.

جدول (2)

<table>
<thead>
<tr>
<th>التفاوت (مم)</th>
<th>البعد</th>
<th>النوع</th>
</tr>
</thead>
<tbody>
<tr>
<td>- (1 + 0.05 e)*</td>
<td>تخانة الجدار</td>
<td>مواسير</td>
</tr>
<tr>
<td>± (2 + 0.05b)</td>
<td>تخانة الفلانشة</td>
<td>مسابقات خاصة</td>
</tr>
<tr>
<td>- (2 + 0.05 e)*</td>
<td>تخانة الجدار</td>
<td></td>
</tr>
<tr>
<td>± (3 + 0.05 b)</td>
<td>تخانة الفلانشة</td>
<td></td>
</tr>
</tbody>
</table>

لا يوجد حد أقصى للتفاوت في الاتجاه الموجب

3/3 التفاوت في الأطوال

بحدد جدول (3) التفاوت في الأطوال للمواسير والمسابقات الخاصة.

جدول (3)

<table>
<thead>
<tr>
<th>التفاوت (مم)</th>
<th>قطر الاسمي</th>
<th>النوع</th>
</tr>
</thead>
<tbody>
<tr>
<td>±20DN</td>
<td>جميع الأقطار</td>
<td>مواسير برأس وذيل بدون فلتشات</td>
</tr>
<tr>
<td>±20DN</td>
<td>حتى ويشمل 450DN</td>
<td>مسابقات خاصة برأس قطع برأس وذيل بدون فلتشة</td>
</tr>
<tr>
<td>+20DN</td>
<td>أكبر من 450DN حتى ويشمل 500DN</td>
<td>مسابقات خاصة برأس قطع برأس وذيل وذيل بدون فلتشة</td>
</tr>
<tr>
<td>-30DN</td>
<td>أكبر من 450DN حتى ويشمل 500DN</td>
<td>مواسير بفلتشتين</td>
</tr>
<tr>
<td>±10DN</td>
<td>جميع الأقطار</td>
<td>مسابقات خاصة بفلتشتين</td>
</tr>
</tbody>
</table>

يمكن للمنتاج أن يورد أطوال أقصى حتى % من أجمالي الأطوال الموردة من كل قطر من المواسير ذات الرأس والذيل كما هو محدد بجدول (4).

<table>
<thead>
<tr>
<th>النقص في الطول</th>
<th>الطول المحدد</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>0.5 متر</td>
</tr>
<tr>
<td>1.5</td>
<td>0.5 متر</td>
</tr>
<tr>
<td>أكبر من 4 متر</td>
<td></td>
</tr>
</tbody>
</table>

3/3 الأخطار المسموح به عن الأستقامة

يجب أن تكون المواسير مستقيمة ويتم اختيار الاستقامة بدرجات الماسورة على قصبي المساقة بينهما حوالي ثلثين طول الماسورة المختبرة بحيث يكون أقصى أخطار مسموح به (fm) (بالمليمتر لا يزيد عن fm 1.25 مرة طول الماسورة (L) بالمتفرع لهذه الماسورة وذلك فإن L \leq 1.25 ل. لallah يتم استخدام هذة الماسورة.)

3/3 التفاوت في الكتلة

الكتل القياسية هي الكتلة المحددة في الجداول المذكورة في المواصفة أو المحسوبة على أساس أن كتلة المتر المكعب من الحديد الزهر = 7150 كجم/م³، وبهذا جدول 5 التفاوت المسموح به للكتلة القياسية للمنتجات.

جدول (5)

<table>
<thead>
<tr>
<th>التفاوت %</th>
<th>النوع</th>
</tr>
</thead>
<tbody>
<tr>
<td>±5</td>
<td>المواسير</td>
</tr>
<tr>
<td>±8</td>
<td>المسوبات الخاصة فيما عدا المذكورة أسبق</td>
</tr>
<tr>
<td>±12</td>
<td>الكبعان - المسوبات الخاصة التي لها أكثر من فرع و</td>
</tr>
<tr>
<td></td>
<td>المسوبات الغير قياسية</td>
</tr>
</tbody>
</table>

مقبول المسوبات التي كتلتها تزيد عن الحد الأقصى بشرط توافقها مع المتطلبات الأخرى المنصوص عليها بهذه المواصفة.

4- الاختبارات

4/4 الاختبارات الميكانيكية:

4/4/1 المواسير المصنوعة بطريقة الطرد المركزي في قوالب معدنية:

1. يجري الاختبار على:
 1.1 حلقات المواسير حتى قطر قياسي 300 DNS
 1.2 شرائح لاختبار الشد للمواسير أكبر من قطر قياسي 300 DNS

 وعلى أن تقطع الحلقات والشرائح من ذيل المواسير

4/4/2 المواسير المصنوعة بالسباكية بطريقة الطرد المركزي في قوالب رملية:

1. يجري الاختبار على شرائح من المواسير لجميع الافطار الاسمية على ان تقطع الشرائح من ذيل المواسير.

4/8
المواسير المصنعة بالسياكية الرأسية في قوالب رملية و المسوابات الخاصة:

يجري الاختيار على المواسير و المسوابات الخاصة من جميع الأقطار الاسمية على قضبان مسوبة من نفس المعدن الذي استعمل في السياكية.

اختبارات الحلقة للمواسير المصنعة بالمطاوعة الطرد المركزي في قوالب معدنية شكل:

(1):

يجري الاختبار على عينات حلقة بعرض 25 مم تقريبا على ماكينة اختبار مناسبة حيث تتركز الحلقة بين فكي الماكينة تماما و يطبق الحمل من الداخل عند هذه النقاط.

يحسب معامل قوة الثني للحلقة من حمل الكسر بالمعادلة:

\[R = \frac{3P(D - e)}{\Pi be^2} \]

حيث:

- معامل قوة الثني للحلقة بالنيوتن لكل مليمتر مربع R.
- قطر الحلقة الخارجي بالمليمتر D.
- عرض الحلقة بالمليمتر e.
- تخانة جدار الحلقة بالملليمتر b.

5/4 الاختبارات على الشرائح للمواسير المصنعة بالسياكية بطريقة الطرد المركزي في قوالب معدنية أو رملية:

تؤخذ عينات اختبار الشد من المواسير على ان يكون طول العينة حوالي 90 مم و قطر حوالي 18 مم - و يمكن ان يختلف قطر باختلاف تخانة الماسورة - و يتم تجهيز نهايات العينة لتناسب ماكينة الاختبار و يوضح شكل (2) احد التصاميم المناسبة للاختبار.

6/4 الاختبارات على القضبان للمواسير المصنعة بالسياكية الرأسية في قوالب رملية:

تصب عينة الاختبار بطريقة صحيحة بحيث تكون خالية من العيبون و يتم تجهيز العينه او تركها دون تجهيز بحيث يكون قطرها حوالي من 100 مم إلى 25 مم مع تجهيز نهايات العينة لتناسب ماكينة الاختبار و يوضح شكل (3) احد التصاميم المناسبة لإجراء الاختبار.

7/4 نتائج الاختبارات:

تجرى الاختبارات الميكانيكية خلال التصنيع مرتين خلال يوم الصب - و تتمثل نتائج الاختبار على المواسير والمسوابات الخاصة من جميع الأقطار المصنعة خلال هذا اليوم. ويسمح للمصنع ان يأخذ ثلاثة قطع اختبار من نفس الماسورة أو خلال صب نفس المعدن - حيث يجب ان تتوافق عينات على الاقل من القطع الثلاث مع المتطلبات المذكورة في جدول (6).
جدول (2)

<table>
<thead>
<tr>
<th>الحد الادنى للمقاومة (نيوتن/م²)</th>
<th>نوع الاختبار</th>
<th>القدر الاسمي</th>
<th>نوع السبكة</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>اختبار الإعوجاج على الحلقة</td>
<td>DN 300</td>
<td>مواسير مصنعة بطريقة الطرد المركزي في قوالب معدنية.</td>
</tr>
<tr>
<td>400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>اختبار شد على قضيب مشغول</td>
<td>DN 300</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DN 600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>اختبار شد على قضيب مشغول</td>
<td>DN 300</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
<td></td>
<td>مواسير مصنعة بطريقة الطرد المركزي في قوالب رملية.</td>
</tr>
<tr>
<td>180</td>
<td></td>
<td>DN 600</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
<td>DN 600</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>اختبار شد على قضيب مسويك</td>
<td></td>
<td>مواسير مصنعة بالسببكة الراسية في قوالب رملية.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>مسوبكات خاصه</td>
</tr>
</tbody>
</table>

يمكن للمتتج و المشتري ان يتفق على ابتداء اختبار الشد للعينة المججز من القضبان باستخدام الحلقة السريع كما عليه تحديد ظروف الاختبار.

جميع المواسير التي تم اخذ عينات اختبار منها يتم قبولها من المشتري كاطوال كامله.

2/4 اختبار بريل للصلاده:

للتاك من حدود الصلاده المحدد باللبن (٢/٢/٦) يتم اجراء الاختبار طبقا لما هو منصوص عليه بالمواصفه القياسية المصريه رقم (١٣٧) الخاصة باختبار الصلاده للمعادن بطريقة بريل وذلك على حلقات الاختبار أو القضبان التي اخذت من مواسير و استخدمت في اجراء الاختبارات السابقة - و يتم الاختبار بما يطبق حمل يساوي ٣٠٠كجم على كره قطرها ١٠ مم ١٥ ثانيه أو حمل يساوي ٧٥كجم على كره قطرها ٥م مدة ١٠ ثانية.
الاختبارات الهيدروليكية:

تجرى الاختبارات الهيدروليكية طبقاً للجدول (10).

<table>
<thead>
<tr>
<th>القطر</th>
<th>الضغط الاختبار (بار)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>الرتبة</td>
<td>LA</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
</tr>
</tbody>
</table>

المسواكن بLEANA:

* بار = 10 بسكال = 10 نيوتن/م²

المواسير المسبوكه راسياً:

<table>
<thead>
<tr>
<th>القطر</th>
<th>الضغط الاختبار (بار)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>الرتبة</td>
<td>LA</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
</tr>
</tbody>
</table>

المواسير و المسبوكه الخاصه المطلوب لها اختبار تحت ضغوط اكبر يكون لها اعتباراً خاصاً.
لاجراء الاختبار الهيدروليك يجب أن يظل المواسير تحت الضغط لمدة 15 ثانية ويمكن أن يطرق عليها طرحاً معتدلاً بواسطة مطرقة كتلتها 700 جرام ويشترط أن تتحمل المواسير اختبار الضغط دون أن يظهر عليها أي تسرب أو روش أو أي عيب من أي نوع - ويجري الاختبار الهيدروليك قبل طلاء المواسير طالما سمحت الظروف بذلك.

5- التشغيلة

يتم تغطية جميع المواسير والأسلاك الخاصة من الداخل و من الخارج مالم ينص على خلاف ذلك - و يجب أن يكون الطلاء من النوع سريع الجفاف، حيد الاتصال بالمعدن و لا ينتشر - كما يجب الانتظار الطلاء الداخلي على أي مكونات لها القابلية للذوبان في الماء أو يمكن أن يؤثر على طعم أو رائحة الماء بآي سبب من الأشكال و ذلك بعد الغسيل المناسب للخط

6- التفت الشري

في حالة رغبة المشتري التفتيش على المواسير و الأسلاك الخاصة يتم ذلك في المصنع المنتج حيث يقوم المصنع بتقديم المعدات و العمال اللازمة لعمليات التفتيش - و يقوم المنتج باختبار الفتيش المعين من قبل المشتري بميادع عمليات الانتاج و التفتيش حيث يقوم الآخر بمشاهده عمليات الصب و أخذ العينات و تجهيزها و اختبارها و مراجعة الابعاد و الأوزان و الاختبارات الهيدروليكية. و يمكن اجراء عمليات التفتيش ووزن المواسير و الأسلاك الخاصة بعد عملية التغطية - و في حالة عدم حضور المشتري أو من يمثله في الوقت المتفق عليه للتفتيش فمما حق المنتج أن يقوم بعمليه التصنيع و التفتيش بدون حضور المشتري أو من يمثله.
الإبعاد بالملليمترات

<table>
<thead>
<tr>
<th>الدرجة</th>
<th>اليد</th>
<th>الرأس</th>
<th>تخانة</th>
<th>الوصلة</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>DI</td>
<td>A</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>80</td>
<td>98</td>
<td>116</td>
<td>84</td>
<td>110</td>
</tr>
<tr>
<td>100</td>
<td>119</td>
<td>127</td>
<td>69</td>
<td>131</td>
</tr>
<tr>
<td>125</td>
<td>144</td>
<td>133</td>
<td>51</td>
<td>157</td>
</tr>
<tr>
<td>150</td>
<td>170</td>
<td>139</td>
<td>34</td>
<td>183</td>
</tr>
<tr>
<td>200</td>
<td>222</td>
<td>241</td>
<td>100</td>
<td>235</td>
</tr>
<tr>
<td>250</td>
<td>274</td>
<td>294</td>
<td>103</td>
<td>287</td>
</tr>
<tr>
<td>300</td>
<td>328</td>
<td>345</td>
<td>126</td>
<td>329</td>
</tr>
<tr>
<td>350</td>
<td>357</td>
<td>376</td>
<td>117</td>
<td>391</td>
</tr>
<tr>
<td>400</td>
<td>420</td>
<td>439</td>
<td>110</td>
<td>442</td>
</tr>
<tr>
<td>500</td>
<td>532</td>
<td>553</td>
<td>115</td>
<td>546</td>
</tr>
<tr>
<td>600</td>
<td>603</td>
<td>633</td>
<td>120</td>
<td>650</td>
</tr>
<tr>
<td>700</td>
<td>732</td>
<td>760</td>
<td>122</td>
<td>783</td>
</tr>
<tr>
<td>800</td>
<td>847</td>
<td>865</td>
<td>125</td>
<td>857</td>
</tr>
<tr>
<td>900</td>
<td>943</td>
<td>968</td>
<td>128</td>
<td>950</td>
</tr>
<tr>
<td>1000</td>
<td>1042</td>
<td>1072</td>
<td>130</td>
<td>1064</td>
</tr>
</tbody>
</table>

(1) الإبعاد H0 قابلة للتغير حيث أنها يدلان فقط على إقل تخانة ممكنة
2/7

المسبوکات الخاصة - ابعاد الرأس والذيل

\[a = 3 + 0.001 \text{ DN} \]
\[b = 35 + 0.1 \text{ DN} \]
\[g = 20 + 0.035 \text{ DN} \]
\[h = 10 + 0.025 \text{ DN} \]

<table>
<thead>
<tr>
<th>DN</th>
<th>DI</th>
<th>P</th>
<th>A</th>
<th>a</th>
<th>b</th>
<th>g(1)</th>
<th>h(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>116</td>
<td>84</td>
<td>110</td>
<td>3</td>
<td>43</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td>100</td>
<td>137</td>
<td>88</td>
<td>131</td>
<td>3</td>
<td>45</td>
<td>23.5</td>
<td>12.5</td>
</tr>
<tr>
<td>125</td>
<td>153</td>
<td>91</td>
<td>157</td>
<td>3</td>
<td>47.5</td>
<td>24.5</td>
<td>13</td>
</tr>
<tr>
<td>150</td>
<td>189</td>
<td>94</td>
<td>183</td>
<td>3</td>
<td>50</td>
<td>25.5</td>
<td>14</td>
</tr>
<tr>
<td>200</td>
<td>241</td>
<td>100</td>
<td>235</td>
<td>3</td>
<td>55</td>
<td>27</td>
<td>15</td>
</tr>
<tr>
<td>250</td>
<td>294</td>
<td>103</td>
<td>287</td>
<td>3.5</td>
<td>60</td>
<td>29</td>
<td>16.5</td>
</tr>
<tr>
<td>300</td>
<td>346</td>
<td>105</td>
<td>339</td>
<td>3.5</td>
<td>65</td>
<td>30.5</td>
<td>17.5</td>
</tr>
<tr>
<td>350</td>
<td>398</td>
<td>107</td>
<td>391</td>
<td>3.5</td>
<td>70</td>
<td>32.5</td>
<td>19</td>
</tr>
<tr>
<td>400</td>
<td>449</td>
<td>110</td>
<td>442</td>
<td>3.5</td>
<td>75</td>
<td>34</td>
<td>20</td>
</tr>
<tr>
<td>500</td>
<td>553</td>
<td>115</td>
<td>546</td>
<td>3.5</td>
<td>85</td>
<td>37.5</td>
<td>22.5</td>
</tr>
<tr>
<td>600</td>
<td>657</td>
<td>120</td>
<td>650</td>
<td>3.5</td>
<td>95</td>
<td>41</td>
<td>25</td>
</tr>
<tr>
<td>700</td>
<td>760</td>
<td>122</td>
<td>753</td>
<td>3.5</td>
<td>105</td>
<td>44.5</td>
<td>27.5</td>
</tr>
<tr>
<td>800</td>
<td>865</td>
<td>125</td>
<td>857</td>
<td>4</td>
<td>115</td>
<td>48</td>
<td>30</td>
</tr>
<tr>
<td>900</td>
<td>968</td>
<td>128</td>
<td>960</td>
<td>4</td>
<td>125</td>
<td>51.5</td>
<td>32.5</td>
</tr>
<tr>
<td>1000</td>
<td>1072</td>
<td>130</td>
<td>1064</td>
<td>4</td>
<td>135</td>
<td>65</td>
<td>35</td>
</tr>
</tbody>
</table>

(1) الابعاد قابلة للتغيير حيث انها يدلان فقط على أقل نخالة ممكنه

g & h
ب = 19 + 0.0028 DN
\(f = 35 + 0.1 \) DN
\(s = 10.5 + 0.03 \) DN

الطاقةمكانية تسارى تخذه المسورة أو
المسيرة الخاصة المشتملة على
الفلاتش واسعته قيمة

<table>
<thead>
<tr>
<th>الاسم المعيّن</th>
<th>D</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>200</td>
<td>24</td>
<td>21</td>
<td>3</td>
<td>3</td>
<td>43</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>100</td>
<td>220</td>
<td>28</td>
<td>22</td>
<td>3</td>
<td>46</td>
<td>13.5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>260</td>
<td>31.5</td>
<td>25.5</td>
<td>3</td>
<td>47.5</td>
<td>14.8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>285</td>
<td>209</td>
<td>26</td>
<td>3</td>
<td>50</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>340</td>
<td>264</td>
<td>27.5</td>
<td>3</td>
<td>55</td>
<td>16.5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>396</td>
<td>319</td>
<td>29</td>
<td>3</td>
<td>60</td>
<td>18</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>445</td>
<td>367</td>
<td>31.5</td>
<td>4</td>
<td>85</td>
<td>19.5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>525</td>
<td>427</td>
<td>33</td>
<td>4</td>
<td>70</td>
<td>21</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>565</td>
<td>477</td>
<td>34</td>
<td>4</td>
<td>75</td>
<td>22.5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>670</td>
<td>582</td>
<td>37</td>
<td>4</td>
<td>85</td>
<td>25.5</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>760</td>
<td>682</td>
<td>41</td>
<td>5</td>
<td>95</td>
<td>26.5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>855</td>
<td>787</td>
<td>43.5</td>
<td>5</td>
<td>105</td>
<td>31.5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>1015</td>
<td>904</td>
<td>68.5</td>
<td>5</td>
<td>115</td>
<td>34.5</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>1115</td>
<td>1004</td>
<td>49</td>
<td>4</td>
<td>125</td>
<td>37.5</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>1230</td>
<td>1111</td>
<td>52</td>
<td>4</td>
<td>135</td>
<td>40.5</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
PN 10

الأبعاد بالملليمترات

<table>
<thead>
<tr>
<th>DN (المسمى السائد)</th>
<th>قطر القطر</th>
<th>عدد الفتحات</th>
<th>قطر الفتحات</th>
<th>قطر المسامير</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>200</td>
<td>160</td>
<td>8 (1)</td>
<td>19</td>
</tr>
<tr>
<td>100</td>
<td>220</td>
<td>180</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>125</td>
<td>250</td>
<td>210</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>150</td>
<td>285</td>
<td>240</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>200</td>
<td>340</td>
<td>295</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>250</td>
<td>395</td>
<td>350</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>300</td>
<td>445</td>
<td>400</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>350</td>
<td>505</td>
<td>460</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>400</td>
<td>565</td>
<td>515</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>500</td>
<td>670</td>
<td>620</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>600</td>
<td>750</td>
<td>725</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>700</td>
<td>895</td>
<td>840</td>
<td>24</td>
<td>31</td>
</tr>
<tr>
<td>800</td>
<td>1015</td>
<td>950</td>
<td>24</td>
<td>34</td>
</tr>
<tr>
<td>900</td>
<td>1115</td>
<td>1080</td>
<td>28</td>
<td>34</td>
</tr>
<tr>
<td>1000</td>
<td>1250</td>
<td>1160</td>
<td>28</td>
<td>37</td>
</tr>
</tbody>
</table>

(1) بالنسبة للفلاشات ذات القطر السائد 80 وضغط
اسمي السائد PN 10 يمكن تقليل عدد الفتحات إلى 4 بناء على
رغبة المشتري وذلك حتى يمكن استخدامها مع فلاشات
الموجودة بالخط القديم
7- ابعاد المواسير

7/1 تتفق المواسير من حيث التخانة إلى 3 رتب:
الرتب LA و تعتبر هذه الرتب الأساسي وقد تحدد تخانتها بطريقة رياضية مرتبطه كمعادله خطيه للقطر
الاسمي.
لجميع الاقطار الأساسيه A وتزيد هذه الرتب في التخانه بنسبة 10% عن الرتب LA الرتب B وتزيد هذه الرتب في التخانه بنسبة 20% عن الرتب LA لجميع الاقطار الأساسيه.

7/1/1 وللاستخدامات الخاصه يمكن ان يكون هناك الرتب E, D, C بزيادة 30% ، 40% ، 50% في التخانه عن الرتب LA على الترتيب.

7/1/2 يتم حساب الكتل لكل من الاطوال المستخدمة مع الاخذ في الاعتبار كتلة الراس في كل حالة على أنها قيمة ثابتة تتناسب مع كتلة بدن الماسورة.

7/1/3 للمواسير ذات الفلانشه يوجد فقط الرتب B التي لها فلانشات إما مسوبكة او فلانشات مفتوحة.
وفي حالة الفلانشات المفتوحة يترك للمتجر حريه التصرف في طبيعي الفلشة وسن الفلانوه وذلك على
اساس ان الفلانشات لن تنزع بعد ربطها على المواسير.
الكثافة بالكيلو جرام

<table>
<thead>
<tr>
<th>القدر</th>
<th>وحدة الطول الفعلي</th>
<th>L</th>
<th>4m</th>
<th>4,5m</th>
<th>5m</th>
<th>5,5m</th>
<th>6m</th>
<th>6,5m</th>
<th>7m</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td></td>
<td></td>
<td>94</td>
<td>72</td>
<td>94</td>
<td>72</td>
<td>94</td>
<td>72</td>
<td>94</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td>118</td>
<td>73</td>
<td>99</td>
<td>71</td>
<td>106</td>
<td>70</td>
<td>119</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td>146</td>
<td>81</td>
<td>118</td>
<td>74</td>
<td>136</td>
<td>81</td>
<td>119</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td>170</td>
<td>87</td>
<td>126</td>
<td>83</td>
<td>160</td>
<td>87</td>
<td>127</td>
</tr>
<tr>
<td>175</td>
<td></td>
<td></td>
<td>198</td>
<td>94</td>
<td>137</td>
<td>89</td>
<td>183</td>
<td>94</td>
<td>136</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td>222</td>
<td>100</td>
<td>146</td>
<td>95</td>
<td>216</td>
<td>100</td>
<td>147</td>
</tr>
<tr>
<td>250</td>
<td></td>
<td></td>
<td>274</td>
<td>107</td>
<td>166</td>
<td>100</td>
<td>256</td>
<td>107</td>
<td>166</td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
<td>326</td>
<td>114</td>
<td>186</td>
<td>107</td>
<td>316</td>
<td>114</td>
<td>187</td>
</tr>
<tr>
<td>350</td>
<td></td>
<td></td>
<td>382</td>
<td>118</td>
<td>206</td>
<td>111</td>
<td>356</td>
<td>118</td>
<td>206</td>
</tr>
<tr>
<td>400</td>
<td></td>
<td></td>
<td>429</td>
<td>120</td>
<td>226</td>
<td>117</td>
<td>429</td>
<td>120</td>
<td>227</td>
</tr>
<tr>
<td>500</td>
<td></td>
<td></td>
<td>532</td>
<td>143</td>
<td>272</td>
<td>141</td>
<td>532</td>
<td>143</td>
<td>273</td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
<td>635</td>
<td>169</td>
<td>318</td>
<td>167</td>
<td>635</td>
<td>169</td>
<td>319</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td></td>
<td>728</td>
<td>195</td>
<td>364</td>
<td>193</td>
<td>728</td>
<td>195</td>
<td>364</td>
</tr>
<tr>
<td>800</td>
<td></td>
<td></td>
<td>842</td>
<td>222</td>
<td>410</td>
<td>220</td>
<td>842</td>
<td>222</td>
<td>411</td>
</tr>
<tr>
<td>900</td>
<td></td>
<td></td>
<td>945</td>
<td>249</td>
<td>457</td>
<td>247</td>
<td>945</td>
<td>249</td>
<td>458</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td>1048</td>
<td>275</td>
<td>505</td>
<td>273</td>
<td>1048</td>
<td>275</td>
<td>507</td>
</tr>
</tbody>
</table>

المواسم ذات الرأس والذيل - الركن L

\[e = \frac{c}{10} (7 + 0.02 \text{ DN}) \]
الكثّة بالكيلو جرام

<table>
<thead>
<tr>
<th>الارتفاع الزمني DN</th>
<th>الكثّة الكلية لوحدة الطول الفعل L</th>
<th>الكثّة الكلية لوحدة الطول الفعل L</th>
<th>الكثّة الكلية لوحدة الطول الفعل L</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 m</td>
<td>4.88 m</td>
<td>5 m</td>
<td>5.5 m</td>
</tr>
<tr>
<td>80</td>
<td>94</td>
<td>98</td>
<td>14.7</td>
</tr>
<tr>
<td>100</td>
<td>112</td>
<td>110</td>
<td>18.6</td>
</tr>
<tr>
<td>125</td>
<td>144</td>
<td>144</td>
<td>24.2</td>
</tr>
<tr>
<td>150</td>
<td>170</td>
<td>170</td>
<td>30.1</td>
</tr>
<tr>
<td>200</td>
<td>222</td>
<td>222</td>
<td>44.0</td>
</tr>
<tr>
<td>250</td>
<td>274</td>
<td>274</td>
<td>59.3</td>
</tr>
<tr>
<td>300</td>
<td>326</td>
<td>326</td>
<td>76.6</td>
</tr>
<tr>
<td>350</td>
<td>378</td>
<td>378</td>
<td>96.3</td>
</tr>
<tr>
<td>400</td>
<td>429</td>
<td>429</td>
<td>116.9</td>
</tr>
<tr>
<td>500</td>
<td>532</td>
<td>532</td>
<td>165.2</td>
</tr>
<tr>
<td>600</td>
<td>635</td>
<td>635</td>
<td>219.8</td>
</tr>
<tr>
<td>700</td>
<td>738</td>
<td>738</td>
<td>283.2</td>
</tr>
<tr>
<td>800</td>
<td>842</td>
<td>842</td>
<td>304.9</td>
</tr>
<tr>
<td>900</td>
<td>945</td>
<td>945</td>
<td>383.9</td>
</tr>
<tr>
<td>1000</td>
<td>1048</td>
<td>1048</td>
<td>518.3</td>
</tr>
</tbody>
</table>
الكثافة بالكيلو جرام

<table>
<thead>
<tr>
<th>الدiameter</th>
<th>e</th>
<th>e</th>
<th>e</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>98</td>
<td>8,6</td>
<td>17,3</td>
<td>3,7</td>
</tr>
<tr>
<td>100</td>
<td>118</td>
<td>9,0</td>
<td>22,0</td>
<td>4,2</td>
</tr>
<tr>
<td>125</td>
<td>144</td>
<td>9,5</td>
<td>28,7</td>
<td>5,3</td>
</tr>
<tr>
<td>150</td>
<td>170</td>
<td>10,0</td>
<td>35,9</td>
<td>6,7</td>
</tr>
<tr>
<td>200</td>
<td>222</td>
<td>11,0</td>
<td>52,1</td>
<td>9,3</td>
</tr>
<tr>
<td>250</td>
<td>274</td>
<td>12,0</td>
<td>70,6</td>
<td>12,0</td>
</tr>
<tr>
<td>300</td>
<td>326</td>
<td>13,0</td>
<td>91,4</td>
<td>14,8</td>
</tr>
<tr>
<td>350</td>
<td>378</td>
<td>14,0</td>
<td>114,5</td>
<td>19,0</td>
</tr>
<tr>
<td>400</td>
<td>429</td>
<td>15,0</td>
<td>139,5</td>
<td>23,4</td>
</tr>
<tr>
<td>500</td>
<td>532</td>
<td>17,0</td>
<td>196,7</td>
<td>32,1</td>
</tr>
<tr>
<td>600</td>
<td>635</td>
<td>19,0</td>
<td>262,9</td>
<td>44,0</td>
</tr>
<tr>
<td>700</td>
<td>738</td>
<td>21,0</td>
<td>338,2</td>
<td>59,9</td>
</tr>
<tr>
<td>800</td>
<td>842</td>
<td>23,0</td>
<td>423,1</td>
<td>80,8</td>
</tr>
<tr>
<td>900</td>
<td>945</td>
<td>25,0</td>
<td>516,6</td>
<td>94,6</td>
</tr>
<tr>
<td>1000</td>
<td>1046</td>
<td>27,0</td>
<td>619,2</td>
<td>120,0</td>
</tr>
</tbody>
</table>

(1) يعتمد ذلك على أمكانيات المصنع

ملحوظة: المواضير ذات الفلانشات المصغرة بالسبيكة الرأسية يمكن ان تصنع بخانة أكبر لتصبح حتى تخانة المسبوكات الخاصة المقابلة لها.
المواسير ذات الفланات المصنوعة بالسباكه بطريقة الطرد المركزي – الرتبة

\[e = 7 + 0.02 \text{ DN} \]

<table>
<thead>
<tr>
<th>الدور</th>
<th>DE</th>
<th>e</th>
<th>e_باليوم</th>
<th>الوعاء</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>98</td>
<td>8.6</td>
<td>17.3</td>
<td>4.3</td>
<td>2-3, 4, 4.88, 5, 5.5, 6</td>
</tr>
<tr>
<td>100</td>
<td>118</td>
<td>9.0</td>
<td>22.0</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>144</td>
<td>9.5</td>
<td>28.7</td>
<td>6.6</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>170</td>
<td>10.0</td>
<td>35.9</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>222</td>
<td>11.0</td>
<td>52.1</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>274</td>
<td>12.0</td>
<td>70.8</td>
<td>14.7</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>326</td>
<td>13.0</td>
<td>91.4</td>
<td>18.8</td>
<td></td>
</tr>
</tbody>
</table>

يجب دراسة على الركود ليمكن تضحية
1/8

- 8 - ابعاد المستويات الخاصة

1 عام:

- كفاعده عامة تصميم المستويات الخاصة باقل الإبعاد الممكنه وتكون نهايتها اما برأس أو فلاتشه.
- المستويات الخاصة والتي نهايتها ذيل تعتبر أقل مانة و احكاف.
- المسويات ذات الفلاتشه والراس و المسويات ذات الفلاتشه والذيل تكون قصيره بقدر الامكان.
- ولكي تكون حجم الفروض اللازم للحجرات التي غالبا ما توضع فيها تحت الأرض.
- صمت الكياعن 1/2 بنصف قطر انحناء متقص عليه من اغليه الدول.
- الكياعن 1/8 (بند 9/16, 9/8) صمت بحيث يكون نصف قطر الجزء الأفست بقيمه
- موحد بما يسمح بالتشكيل المتالي للانحناءات المتتابعة للنماذج المختلفة.
- الكياعن فيلاتشه 1/8 (بند 16/9) هي فقط التي لها نصف قطر مختلف، و
- يتم ذلك على طول المماسات
- في التهبات (بند 16/9, 9/8) تتوزد بالحد الأقصى للفروع حيث
- انها تستخدم أساسا في خطوط التوزيع عندما تتخصيص الفروع الى اقل قطر اسمي 80
- مما قد يتسبب في
- اضعاف الخط الرئيسي.
- خطوط ذات قطر اسمي اكبر من 300
- عادة ما تكون الجزء المركزكي للخطوط بالنسبة للتصول او
- التصريف ولا تستعمل عادة كمرشاة لمواد اقتصاد الصغرية – ولذا فإنه عندما يكون
- قطر أقل من 300
- نستخدم التهبات ذات الفروع التي لها قطر اسمي 80 او أكبر من نصف قطر
- الاسمي للجهة المركزكي
- في التهبات ذات الفروع الصغرى جدا التي لها اطول مسافة يمكن اعتمادها تدريجيا بعد دراسه احصائية
- لاستخدامها.
- من المهم الإشارة إلى نوعين مختلفين لكل مقاس من التهبات هما:
- التهبات مزدوجه الرأس بفرع و فلاتشه (بند 9/8)
- التهبات مزدوجه الرأس بفرع و رأس (بند 9/9)
- و تواجد هذان النوعين معاً يشكل وضعاً مؤسفًا حيث أن عدد نماذج التهبات اكبر بكثير من عدد
- المسويات الخاصه الأخرى على أساس التنوع في قطر الفروع و يرجع ضرورة تواجد النوعين في
- طرق استخدام المحابس بالاقتراخ المختلف:
- في اقطر معينه يتم استخدام محاسب فلاشة و من ثم تهبات بفروع ذات فلاتشهات
- في اقطر أخرى بالذات في الدول الامريكية تستخدم المحابس ذات الرؤوس وبالتالي تكون التهبات
- بالفراع ذات الرؤوس في المفصل.
- لذلك فمن المرغوب فيه للوصول إلى خفض عدد التهبات يمكن اتخاذ الحل الدولي بخفض أنواع المحابس و
- كذلك التهبات تدريجياً.
- يصنع الصلايب حتى قطر اسمي 300
- بيفرود متوازي على البند، و من غير الملازم تخفيض هذه
- الفروع على أساس الجمعية العديدة للفراع مع قلله عند الصلايب المستخدمة
- الصلايب معدل مزدوج الرأس و صلايب مزدوج الفلاتشه (بند 9/9, 9/11) يكون قصيرًا بقدر الامكان و
- ذلك حتى يسمح باستخدام اعداد كبيره متتالية منها عند الضرورة
- - الغطاء - المسادة و الفلاتشه المصمت (بند 16/9، 9/16) هذه القطاع تبدو بدون تقييم كما
- يمكن تصنيعها بنهايات على شكل قيه

1/8
\[
e = \frac{14}{12} \left(7 + 0.02 \text{DN} \right)
\]

<table>
<thead>
<tr>
<th>DN</th>
<th>e</th>
<th>(7 + 0.02 \text{DN})</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>10.0</td>
<td>150</td>
</tr>
<tr>
<td>100</td>
<td>10.5</td>
<td>150</td>
</tr>
<tr>
<td>125</td>
<td>11.1</td>
<td>150</td>
</tr>
<tr>
<td>150</td>
<td>11.7</td>
<td>150</td>
</tr>
<tr>
<td>200</td>
<td>12.8</td>
<td>150</td>
</tr>
<tr>
<td>250</td>
<td>14.0</td>
<td>150</td>
</tr>
<tr>
<td>300</td>
<td>15.2</td>
<td>150</td>
</tr>
<tr>
<td>350</td>
<td>16.3</td>
<td>150</td>
</tr>
<tr>
<td>400</td>
<td>17.6</td>
<td>150</td>
</tr>
<tr>
<td>500</td>
<td>19.8</td>
<td>150</td>
</tr>
<tr>
<td>600</td>
<td>22.2</td>
<td>150</td>
</tr>
<tr>
<td>700</td>
<td>24.5</td>
<td>150</td>
</tr>
<tr>
<td>800</td>
<td>26.8</td>
<td>150</td>
</tr>
<tr>
<td>900</td>
<td>29.2</td>
<td>150</td>
</tr>
<tr>
<td>1000</td>
<td>31.6</td>
<td>300</td>
</tr>
</tbody>
</table>

\(e = \frac{14}{12} \left(7 + 0.02 \text{DN} \right) \)
الكيبان 1/4 ذات الرأس المزدوج:

\[e = \frac{14}{12} (7 + 0.02 \text{ DI})^{(1)} \]

\[L = 150 + 0.1 \text{ DN} \]

(1) لقيم DI انظر بند 2/3

<table>
<thead>
<tr>
<th>DN</th>
<th>(e)</th>
<th>(L)</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>10.9</td>
<td>158</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>11.4</td>
<td>160</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>12.0</td>
<td>163</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>12.6</td>
<td>165</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>13.8</td>
<td>170</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>15.0</td>
<td>175</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>16.2</td>
<td>180</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>17.5</td>
<td>185</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>18.8</td>
<td>190</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>21.1</td>
<td>200</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>23.5</td>
<td>210</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>25.9</td>
<td>220</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>28.4</td>
<td>230</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>30.8</td>
<td>240</td>
<td>448</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>33.2</td>
<td>250</td>
<td>547</td>
<td></td>
</tr>
</tbody>
</table>
\[
e = \frac{14}{12}(7 + 0.02 \text{DN})
\]
\[
a = 35 + 0.1 \text{DN}
\]
\[
b = 117.8 + 0.514 \text{DN}
\]
\[
r = 200 + \text{DN}
\]
\[
a = 35 + 0.1 \text{DN}
\]
\[
b = 74.78 + 0.2989 \text{DN}
\]
٧/٩

 közű ١/٣٢ ذات رأس مزدوج

\[
e = \frac{14}{12} (7 + 0.02 \text{ DN})
\]

\[
r = 200 + \text{ DN}
\]

\[
a = 35 + 0.1 \text{ DN}
\]

\[
b = 54.69 + 0.198 \text{ DN}
\]
\[e = \frac{14}{12} \left(7 + 0.02 \text{ DN} \right) \]
\[L = 100 + 1.4 \text{ DN} \]
\[
\begin{align*}
80 &= 100 + \text{DN} \\
100 \text{ to } 250 &= 150 + 0.5 \text{ DN} \\
300 \text{ to } 1000 &= 250 + 0.5 \text{ DN}
\end{align*}
\]

<table>
<thead>
<tr>
<th>DN</th>
<th>h</th>
<th>(e)</th>
<th>(L)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>10.0</td>
<td>212</td>
<td>10.0</td>
<td>22</td>
</tr>
<tr>
<td>100</td>
<td>10.5</td>
<td>240</td>
<td>10.5</td>
<td>28</td>
</tr>
<tr>
<td>125</td>
<td>11.1</td>
<td>275</td>
<td>11.1</td>
<td>22.5</td>
</tr>
<tr>
<td>150</td>
<td>11.7</td>
<td>310</td>
<td>11.7</td>
<td>22.5</td>
</tr>
<tr>
<td>200</td>
<td>12.8</td>
<td>380</td>
<td>12.8</td>
<td>250</td>
</tr>
<tr>
<td>250</td>
<td>14.0</td>
<td>450</td>
<td>14.0</td>
<td>275</td>
</tr>
<tr>
<td>300</td>
<td>15.2</td>
<td>520</td>
<td>15.2</td>
<td>300</td>
</tr>
<tr>
<td>350</td>
<td>16.3</td>
<td>590</td>
<td>16.3</td>
<td>325</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DN</th>
<th>h</th>
<th>(e)</th>
<th>(L)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>17.8</td>
<td>660</td>
<td>17.8</td>
<td>350</td>
</tr>
<tr>
<td>500</td>
<td>19.8</td>
<td>800</td>
<td>19.8</td>
<td>350</td>
</tr>
<tr>
<td>600</td>
<td>22.2</td>
<td>940</td>
<td>22.2</td>
<td>550</td>
</tr>
<tr>
<td>700</td>
<td>24.5</td>
<td>1080</td>
<td>24.5</td>
<td>550</td>
</tr>
<tr>
<td>800</td>
<td>26.8</td>
<td>1220</td>
<td>26.8</td>
<td>650</td>
</tr>
<tr>
<td>900</td>
<td>29.2</td>
<td>1360</td>
<td>29.2</td>
<td>750</td>
</tr>
<tr>
<td>1000</td>
<td>31.5</td>
<td>1500</td>
<td>31.5</td>
<td>750</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DN</th>
<th>h</th>
<th>(e)</th>
<th>(L)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>175</td>
<td>14.0</td>
<td>450</td>
<td>14.0</td>
<td>275</td>
</tr>
<tr>
<td>200</td>
<td>15.2</td>
<td>520</td>
<td>15.2</td>
<td>300</td>
</tr>
<tr>
<td>250</td>
<td>16.3</td>
<td>590</td>
<td>16.3</td>
<td>325</td>
</tr>
<tr>
<td>300</td>
<td>17.5</td>
<td>660</td>
<td>17.5</td>
<td>350</td>
</tr>
<tr>
<td>350</td>
<td>18.8</td>
<td>730</td>
<td>18.8</td>
<td>375</td>
</tr>
<tr>
<td>400</td>
<td>20.1</td>
<td>800</td>
<td>20.1</td>
<td>375</td>
</tr>
<tr>
<td>450</td>
<td>21.5</td>
<td>870</td>
<td>21.5</td>
<td>395</td>
</tr>
<tr>
<td>500</td>
<td>23.0</td>
<td>940</td>
<td>23.0</td>
<td>425</td>
</tr>
<tr>
<td>550</td>
<td>24.5</td>
<td>1010</td>
<td>24.5</td>
<td>445</td>
</tr>
<tr>
<td>600</td>
<td>26.0</td>
<td>1080</td>
<td>26.0</td>
<td>465</td>
</tr>
<tr>
<td>650</td>
<td>27.5</td>
<td>1150</td>
<td>27.5</td>
<td>485</td>
</tr>
<tr>
<td>700</td>
<td>29.0</td>
<td>1220</td>
<td>29.0</td>
<td>505</td>
</tr>
<tr>
<td>750</td>
<td>30.5</td>
<td>1290</td>
<td>30.5</td>
<td>525</td>
</tr>
<tr>
<td>800</td>
<td>32.0</td>
<td>1360</td>
<td>32.0</td>
<td>545</td>
</tr>
<tr>
<td>850</td>
<td>33.5</td>
<td>1430</td>
<td>33.5</td>
<td>565</td>
</tr>
<tr>
<td>900</td>
<td>35.0</td>
<td>1500</td>
<td>35.0</td>
<td>585</td>
</tr>
<tr>
<td>950</td>
<td>36.5</td>
<td>1570</td>
<td>36.5</td>
<td>605</td>
</tr>
<tr>
<td>1000</td>
<td>38.0</td>
<td>1640</td>
<td>38.0</td>
<td>625</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DN</th>
<th>h</th>
<th>(e)</th>
<th>(L)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>39.5</td>
<td>1710</td>
<td>39.5</td>
<td>645</td>
</tr>
<tr>
<td>1050</td>
<td>41.0</td>
<td>1780</td>
<td>41.0</td>
<td>665</td>
</tr>
<tr>
<td>1100</td>
<td>42.5</td>
<td>1850</td>
<td>42.5</td>
<td>685</td>
</tr>
<tr>
<td>1150</td>
<td>44.0</td>
<td>1920</td>
<td>44.0</td>
<td>705</td>
</tr>
<tr>
<td>1200</td>
<td>45.5</td>
<td>1990</td>
<td>45.5</td>
<td>725</td>
</tr>
<tr>
<td>1250</td>
<td>47.0</td>
<td>2060</td>
<td>47.0</td>
<td>745</td>
</tr>
<tr>
<td>1300</td>
<td>48.5</td>
<td>2130</td>
<td>48.5</td>
<td>765</td>
</tr>
<tr>
<td>1350</td>
<td>50.0</td>
<td>2200</td>
<td>50.0</td>
<td>785</td>
</tr>
<tr>
<td>1400</td>
<td>51.5</td>
<td>2270</td>
<td>51.5</td>
<td>805</td>
</tr>
<tr>
<td>1450</td>
<td>53.0</td>
<td>2340</td>
<td>53.0</td>
<td>825</td>
</tr>
<tr>
<td>1500</td>
<td>54.5</td>
<td>2410</td>
<td>54.5</td>
<td>845</td>
</tr>
<tr>
<td>1550</td>
<td>56.0</td>
<td>2480</td>
<td>56.0</td>
<td>865</td>
</tr>
<tr>
<td>1600</td>
<td>57.5</td>
<td>2550</td>
<td>57.5</td>
<td>885</td>
</tr>
</tbody>
</table>

\[e = \frac{14}{12} (7 + 0.02 \text{ DN}) \]

\[L = 100 + 1.4 \text{ DN} \]

\[h = 50 + 0.5 \text{ DN} + 0.2 \text{ dn} \]

<table>
<thead>
<tr>
<th>DN</th>
<th>عيار</th>
<th>L</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>10.0</td>
<td>212</td>
<td>80</td>
</tr>
<tr>
<td>100</td>
<td>10.5</td>
<td>240</td>
<td>80</td>
</tr>
<tr>
<td>125</td>
<td>11.1</td>
<td>275</td>
<td>100</td>
</tr>
<tr>
<td>150</td>
<td>11.7</td>
<td>310</td>
<td>150</td>
</tr>
<tr>
<td>200</td>
<td>12.3</td>
<td>350</td>
<td>150</td>
</tr>
<tr>
<td>350</td>
<td>16.3</td>
<td>450</td>
<td>200</td>
</tr>
<tr>
<td>500</td>
<td>19.8</td>
<td>580</td>
<td>200</td>
</tr>
<tr>
<td>1000</td>
<td>22.2</td>
<td>940</td>
<td>300</td>
</tr>
<tr>
<td>1500</td>
<td>22.2</td>
<td>940</td>
<td>300</td>
</tr>
<tr>
<td>2000</td>
<td>22.2</td>
<td>940</td>
<td>300</td>
</tr>
</tbody>
</table>

البيانات في المخططات:

<table>
<thead>
<tr>
<th>DN</th>
<th>عيار</th>
<th>L</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>10.0</td>
<td>212</td>
<td>80</td>
</tr>
<tr>
<td>100</td>
<td>10.5</td>
<td>240</td>
<td>80</td>
</tr>
<tr>
<td>125</td>
<td>11.1</td>
<td>275</td>
<td>100</td>
</tr>
<tr>
<td>150</td>
<td>11.7</td>
<td>310</td>
<td>150</td>
</tr>
<tr>
<td>200</td>
<td>12.3</td>
<td>350</td>
<td>150</td>
</tr>
<tr>
<td>350</td>
<td>16.3</td>
<td>450</td>
<td>200</td>
</tr>
<tr>
<td>500</td>
<td>19.8</td>
<td>580</td>
<td>200</td>
</tr>
<tr>
<td>1000</td>
<td>22.2</td>
<td>940</td>
<td>300</td>
</tr>
<tr>
<td>1500</td>
<td>22.2</td>
<td>940</td>
<td>300</td>
</tr>
<tr>
<td>2000</td>
<td>22.2</td>
<td>940</td>
<td>300</td>
</tr>
</tbody>
</table>
\[e = \frac{14}{12} (7 + 0.02 \text{ DN}) \]

\[L = 100 + 1.4 \text{ DN} \]

\[h = 50 + 0.7 \text{ DN} \]
\[
\begin{align*}
\varepsilon_1 &= \frac{14}{12} (7 + 0.02 \text{ DN}) \\
\varepsilon_2 &= \frac{14}{12} (7 + 0.02 \text{ DN}) \\
L_1 &= 35 + 0.1 \text{ DN} \\
L_2 &= 35 + 0.1 \text{ dn}
\end{align*}
\]

\[\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
\text{DN} & \varepsilon_1 & l_1 & \varepsilon_2 & l_2 & l_3 & L & \infty \\
\hline
100 & 10.5 & 45 & 80 & 10.0 & 43 & 112 & 200 & 18 \\
125 & 11.1 & 47.5 & 80 & 10.0 & 43 & 309.5 & 400 & 27 \\
150 & 11.7 & 50 & 80 & 10.6 & 45 & 306.5 & 400 & 30 \\
200 & 12.8 & 55 & 100 & 10.5 & 45 & 300 & 400 & 43 \\
250 & 14.0 & 60 & 125 & 11.1 & 47.5 & 297.5 & 400 & 47 \\
300 & 15.2 & 65 & 125 & 11.7 & 47.5 & 295 & 400 & 51 \\
350 & 16.3 & 70 & 200 & 12.8 & 55 & 285 & 400 & 75 \\
400 & 17.5 & 75 & 250 & 14.0 & 60 & 475 & 600 & 117 \\
500 & 19.8 & 85 & 350 & 16.3 & 70 & 445 & 600 & 222 \\
600 & 22.2 & 95 & 400 & 17.5 & 75 & 430 & 600 & 290 \\
700 & 24.5 & 105 & 600 & 19.8 & 85 & 420 & 600 & 332 \\
800 & 26.8 & 115 & 22.2 & 95 & 600 & 410 & 600 & 388 \\
900 & 29.2 & 125 & 24.5 & 105 & 600 & 390 & 600 & 501 \\
1000 & 31.5 & 135 & 28.8 & 115 & 800 & 370 & 600 & 629 \\
\hline
\end{array}\]
a = 19 + 0.028 DN

e = \frac{14}{12} (7 + 0.02 \text{ DN})
e = \frac{14}{12} (7 + 0.02 \text{ DN})

r = 65 + 0.9 \text{ DN}

a = 35 + 0.1 \text{ DN}

b = 100 + \text{ DN}

c = 60 + 0.6 \text{ DN}

d = 100 + \text{ DN}
\[e = \frac{14}{12} \left(7 + 0.02 \text{ DN} \right) \]

\[r \begin{cases} 80 \text{ to } 300 &= 156.9 + 2.1728 \text{DN} \\ 350 \text{ to } 1000 &= 200 \text{ DN} \end{cases} \]

\[a = 35 + 0.1 \text{ DN} \]

\[b \begin{cases} 30 \text{ to } 300 &= 100 + \text{DN} \\ 350 \text{ to } 1000 &= 117.8 + 0.514\text{DN} \end{cases} \]

<table>
<thead>
<tr>
<th>DN</th>
<th>e</th>
<th>r</th>
<th>a</th>
<th>b</th>
<th>آلة</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>10.0</td>
<td>331</td>
<td>43</td>
<td>180</td>
<td>14</td>
</tr>
<tr>
<td>100</td>
<td>10.5</td>
<td>374</td>
<td>45</td>
<td>200</td>
<td>18</td>
</tr>
<tr>
<td>125</td>
<td>11.1</td>
<td>429</td>
<td>47.5</td>
<td>225</td>
<td>25</td>
</tr>
<tr>
<td>150</td>
<td>11.7</td>
<td>483</td>
<td>50</td>
<td>250</td>
<td>34</td>
</tr>
<tr>
<td>200</td>
<td>12.8</td>
<td>591</td>
<td>55</td>
<td>300</td>
<td>54</td>
</tr>
<tr>
<td>250</td>
<td>14.0</td>
<td>700</td>
<td>60</td>
<td>350</td>
<td>80</td>
</tr>
<tr>
<td>300</td>
<td>15.2</td>
<td>809</td>
<td>65</td>
<td>400</td>
<td>112</td>
</tr>
<tr>
<td>350</td>
<td>16.3</td>
<td>550</td>
<td>70</td>
<td>298</td>
<td>115</td>
</tr>
<tr>
<td>400</td>
<td>17.5</td>
<td>600</td>
<td>75</td>
<td>324</td>
<td>149</td>
</tr>
<tr>
<td>500</td>
<td>19.8</td>
<td>700</td>
<td>85</td>
<td>375</td>
<td>231</td>
</tr>
<tr>
<td>600</td>
<td>22.2</td>
<td>800</td>
<td>95</td>
<td>426</td>
<td>342</td>
</tr>
<tr>
<td>700</td>
<td>24.5</td>
<td>900</td>
<td>106</td>
<td>478</td>
<td>485</td>
</tr>
<tr>
<td>800</td>
<td>26.8</td>
<td>1000</td>
<td>115</td>
<td>529</td>
<td>667</td>
</tr>
<tr>
<td>900</td>
<td>29.2</td>
<td>1100</td>
<td>125</td>
<td>581</td>
<td>868</td>
</tr>
<tr>
<td>1000</td>
<td>31.5</td>
<td>1200</td>
<td>135</td>
<td>632</td>
<td>1125</td>
</tr>
</tbody>
</table>
\[
e = \frac{14}{12} (7 + 0.02 \text{ DN})
\]

\[
\begin{align*}
L & \quad 80 \text{ to } 300 = 200 + 2 \text{ DN} \\
& \quad 350 \text{ to } 1000 = 500 + \text{DN}
\end{align*}
\]

\[
\begin{align*}
DN & \quad 80 \text{ to } 300 & \quad \text{dn = DN} \\
& \quad \text{dn < DN} & \quad 100 + \text{DN} \\
& \quad \text{dn } \leq 250 & \quad 150 + 0.5 \text{ DN} \\
& \quad \text{dn } \geq 300 & \quad 250 + 0.5 \text{ DN}
\end{align*}
\]

<table>
<thead>
<tr>
<th>DN</th>
<th>80</th>
<th>100</th>
<th>125</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>900</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>10.0</td>
<td>10.5</td>
<td>11.1</td>
<td>11.7</td>
<td>12.8</td>
<td>14.0</td>
<td>15.2</td>
<td>16.3</td>
<td>17.5</td>
<td>19.8</td>
<td>22.2</td>
<td>24.5</td>
<td>26.8</td>
<td>29.2</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>360</td>
<td>400</td>
<td>450</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td>800</td>
<td>900</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>10.0</td>
<td>10.5</td>
<td>11.1</td>
<td>11.7</td>
<td>12.8</td>
<td>14.0</td>
<td>15.2</td>
<td>16.3</td>
<td>17.5</td>
<td>19.8</td>
<td>22.2</td>
<td>24.5</td>
<td>26.8</td>
<td>29.2</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>360</td>
<td>400</td>
<td>450</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td>800</td>
<td>900</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{dn} & = \text{DN} \\
\text{dn} & < \text{DN} \\
\text{dn} & \leq 250 \\
\text{dn} & \geq 300
\end{align*}
\]

<table>
<thead>
<tr>
<th>L</th>
<th>80</th>
<th>100</th>
<th>125</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
<th>350</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>10.0</td>
<td>10.5</td>
<td>11.1</td>
<td>11.7</td>
<td>12.8</td>
<td>14.0</td>
<td>15.2</td>
<td>16.3</td>
</tr>
<tr>
<td>100</td>
<td>360</td>
<td>400</td>
<td>450</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td>800</td>
<td>900</td>
</tr>
</tbody>
</table>

\[
e = 12 \times (7 + 0.02 \text{ DN})
\]

\[
\begin{align*}
L & \quad 80 \text{ to } 300 = 200 + 2 \text{ DN} \\
& \quad 350 \text{ to } 1000 = 500 + \text{DN}
\end{align*}
\]
\[e = \frac{14}{12} (7 + 0.02 \text{ DN}) \]

\[L = 200 + 2 \text{ DN} \]

\[h = 100 + \text{ DN} \]

<table>
<thead>
<tr>
<th>DN</th>
<th>للاضلائه</th>
<th>Ce</th>
<th>L (mm)</th>
<th>h (mm)</th>
<th>GN</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>10.0</td>
<td>360</td>
<td>180</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>100</td>
<td>10.5</td>
<td>400</td>
<td>200</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>125</td>
<td>11.1</td>
<td>450</td>
<td>225</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>150</td>
<td>11.7</td>
<td>500</td>
<td>250</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>200</td>
<td>12.8</td>
<td>600</td>
<td>300</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>250</td>
<td>14.0</td>
<td>700</td>
<td>350</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>300</td>
<td>15.2</td>
<td>800</td>
<td>400</td>
<td>186</td>
<td>186</td>
</tr>
</tbody>
</table>
\[e_1 = \frac{14}{12} (7 + 0.02 \text{ DN}) \]
\[e_2 = \frac{14}{12} (7 + 0.02 \text{ dn}) \]
\[l_1 = 35 + 0.1 \text{ DN} \]
\[l_2 = 35 + 0.1 \text{ dn} \]

<table>
<thead>
<tr>
<th>DN</th>
<th>(e_1)</th>
<th>(l_1)</th>
<th>(e_2)</th>
<th>(l_2)</th>
<th>(l_3)</th>
<th>(l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>10.5</td>
<td>45</td>
<td>80</td>
<td>10.0</td>
<td>43</td>
<td>112</td>
</tr>
<tr>
<td>125</td>
<td>11.1</td>
<td>47.5</td>
<td>100</td>
<td>10.5</td>
<td>46</td>
<td>309.5</td>
</tr>
<tr>
<td>150</td>
<td>11.7</td>
<td>60</td>
<td>80</td>
<td>10.0</td>
<td>43</td>
<td>307.5</td>
</tr>
<tr>
<td>175</td>
<td>12.8</td>
<td>65</td>
<td>100</td>
<td>11.1</td>
<td>47.5</td>
<td>302.5</td>
</tr>
<tr>
<td>200</td>
<td>12.8</td>
<td>55</td>
<td>100</td>
<td>10.5</td>
<td>45</td>
<td>300</td>
</tr>
<tr>
<td>250</td>
<td>14.0</td>
<td>60</td>
<td>125</td>
<td>11.1</td>
<td>50</td>
<td>297.5</td>
</tr>
<tr>
<td>300</td>
<td>15.2</td>
<td>65</td>
<td>150</td>
<td>11.7</td>
<td>55</td>
<td>295</td>
</tr>
<tr>
<td>350</td>
<td>16.3</td>
<td>70</td>
<td>200</td>
<td>12.8</td>
<td>60</td>
<td>290</td>
</tr>
<tr>
<td>400</td>
<td>16.3</td>
<td>70</td>
<td>250</td>
<td>14.0</td>
<td>65</td>
<td>285</td>
</tr>
<tr>
<td>450</td>
<td>17.5</td>
<td>75</td>
<td>300</td>
<td>15.2</td>
<td>70</td>
<td>280</td>
</tr>
<tr>
<td>500</td>
<td>17.5</td>
<td>75</td>
<td>350</td>
<td>16.3</td>
<td>75</td>
<td>275</td>
</tr>
<tr>
<td>600</td>
<td>19.8</td>
<td>85</td>
<td>400</td>
<td>17.5</td>
<td>85</td>
<td>445</td>
</tr>
<tr>
<td>700</td>
<td>22.2</td>
<td>95</td>
<td>500</td>
<td>19.8</td>
<td>95</td>
<td>430</td>
</tr>
<tr>
<td>800</td>
<td>24.5</td>
<td>105</td>
<td>600</td>
<td>19.8</td>
<td>105</td>
<td>420</td>
</tr>
<tr>
<td>900</td>
<td>26.8</td>
<td>115</td>
<td>700</td>
<td>22.2</td>
<td>115</td>
<td>410</td>
</tr>
<tr>
<td>1000</td>
<td>31.5</td>
<td>135</td>
<td>800</td>
<td>26.8</td>
<td>135</td>
<td>400</td>
</tr>
</tbody>
</table>
\[b = 19 + 0.028 \text{ DN} \]
Dome... قبة
Flange ... فланش
Mould .. قلب
Caulking .. قفلط
Bead .. خرزه
Centering ring ... حلقة مركزية
Hoop .. طوق – طارد
Class .. رتبه
vertical casting ... سياقة رأسية
Centrifugal ... طرد مركزي
 tolerances ... السماحات
thickness ... التخانة

المراجع

المواصفات العالمية "إيزو" رقم 13 لسنة 1978

ISO 13/1978

Grey iron pipes special castings and grey iron parts for pressure main lines

الجهات التي شاركت في وضع هذه المواصفة

قال بإعداد هذه المواصفة اللجنة الفنية رقم (1 / 1978) وال خاصة بالمنتجات الحديدية والتي يضم تشكيلها:

الجهات التالية:
- شركة الحديد وصلب المصرية.
- شركة النصر للمواسير.
- شركة النصر للمصابيح.
- كلية الهندسة – جامعة الأزهر.
- شركة شبرا لصناعات الهندسية 27 الحربي.
- الهيئة المصرية العامة للمواصفات والجودة.
1- أنشأت الهيئة المصرية العامة للمواصفات والجودة عام 1957 بالقرار الجمهوري رقم 29 لسنة 1957 الذي نص على اعتبارها المرجع القومي المعتمد للشئون التوحيد القياسي ونص القانون رقم 2 لسنة 1957 على أن المواصفات لا تعتبر قياسية إلا بعد اعتمادها من الهيئة.

2- في عام 1979 صدر القرار الجمهوري رقم 392 لسنة 1979 الذي قرر ضم مركز ضبط الجودة إلى الهيئة، وإعادة تسميتها بالهيئة المصرية العامة للتوحيد القياسي وجودة الإنتاج، وفقاً لهذا القرار فإن الهيئة تختص بالآتي:
- إعداد وإصدار المواصفات القياسية للمتاحات والمنتجات والأجهزة ونظم الإدارة والتوثيق والمعلومات ومتطلبات الأمان والسلامة وفرات العلاجية وأجهزة القياس.
- التقتنيش الفني والبحث والرقابة وسحب العينات وإصدار شهادات المطابقة للمواصفات المعمدة.
- الترخيص بمنح علامة الجودة للمتاحات الصناعية وعلامات وشهادات الجودة والمطابقة المنتجات للمواصفات القياسية.
- تقييم المشورة الفنية وخدمات التدريب في مجالات المواصفات والجودة القياسية ومعايرة الإنتاج.
- توثيق مواصفات وثائق المشروعات الفنية في المنظمات الدولية والإقليمية العامة في مجالات المواصفات والجودة والإنتاج والمعايرة.
- تقوم الهيئة بتنفيذ متطلبات اشتراطات اتفاقية العوارض الفنية على التجارة لمنظمة التجارة العالمية حيث أن الهيئة هي نقطة الاستعلام المصرية للاستلام بالموارد والوثائق في مجال المواصفات وتقييم المطابقة.

3- يدير الهيئة مجلس إداره برئاسة وكيل أول الوزارة رئيس الهيئة، ويضم المجلس في عضوية ممثلين عن مختلف الجهات المعنية للتوحيد القياسي وجودة الإنتاج والإنتاج والمعايرة في مصر بالإضافة إلى عدد من الأكاديميين والعلميين والخبراء القانونيين ورجال الإعلام.

4- يتم إعداد المواصفات القياسية من خلال لجان فنية جروت عدها على مانة لجنة يشارك فيها خبراء طبقاً للمعايير الدولية ومخصصون من جميع الجهات المعنية ويفهم الأمانة الفنية لها أعضاء من العلميين مع الهيئة.

5- يتم توزيع مشروع المواصفات على قاعدة عريضة من الجهات المعنية والبلدان العربية لإداء الملاحظات خلال فترة ستين يوماً كما تعرض هذه المشاريع على لجنة الصياغة ولجان عامة للمراجعة قبل العرض على مجلس الإدارة.

6- تبعت الهيئة نظام الترخيص للمصانع باستخدام علامات الجودة على السلع والمنتجات المطابقة للمواصفات المصرية وذلك حماية المستهلكات وخدمة الصناعين ورفع جودة منتجاتهم. ويندرج بالهيئة مجموعة كبيرة من المعامل الحديثة لاختبار المنتجات الكيميائية مواد البناء والتشييد والمنتجات الهندسية والغذائية ومنتجات الغزل والنسيج بالإضافة إلى معالج لقياس المعادير والممارسة الميكانيكية والكهربائية والفيزيائية.

7- يتوفر بالهيئة وحدة لحماية المستهلك تتلقى شكاوى وتعمل عليها وقد لاقت أعمال الوحدة نجاحاً كبيراً.

8- يتوفر بالهيئة المكتبة الوحيدة في مصر المتخصصة في المواصفات القياسية تحتوي على أكثر من 130 ألف مواصلة دولية وأجنبية وإقليمية وعربية ومصرية.
GREY IRON PIPES SPECIAL CASTINGS
AND GREY IRON PARTS FOR PRESSURE MAIN LINES

Arab Republic of Egypt
Egyptian Organization for Standardization and Quality