In order to promote public education and public safety, equal justice for all, a better informed citizenry, the rule of law, world trade and world peace, this legal document is hereby made available on a noncommercial basis, as it is the right of all humans to know and speak the laws that govern them.

中华人民共和国国家标准

GB ××××.9—××××

工业自动化产品安全要求
第 9 部分：数字显示仪表的安全要求

Safety requirements for industrial automation products
Part 9: Safety requirements for digit display instrument

（报批稿）
目次

前言 .. IV
1 范围 .. 1
2 规范性引用文件 .. 1
3 术语和定义 .. 1
4 试验 .. 5
4.1 概述 .. 5
4.2 试验顺序 ... 5
4.3 基准试验条件 .. 6
4.4 单一故障条件下的试验 .. 6
5 标志和文件 ... 8
5.1 标志 .. 8
5.2 警告标志 ... 10
5.3 标志的耐久性 .. 10
5.4 文件 .. 10
6 防电击 ... 11
6.1 概述 ... 11
6.2 可触及零部件的判定 ... 11
6.3 可触及零部件的允许限值 .. 12
6.4 正常条件下的防护 ... 13
6.5 单一故障条件下的防护 ... 14
6.6 与外部电路的连接 ... 17
6.7 电气间隙和爬电距离 ... 17
6.8 介电强度试验程序 ... 18
6.9 防电击保护的结构要求 ... 22
6.10 供电电源的断开 .. 23
7 防机械危险 ... 24
8 耐机械冲击和撞击 ... 24
8.1 概述 ... 24
9 防止火焰蔓延 ... 24
9.1 概述 ... 24
9.2 消除或减少数显表内的引燃源 ... 25
9.3 一旦出现着火，将火焰控制在数显表内 ... 25
9.4 限能电路 ... 27
9.5 过流保护 ... 28
10 设备的温度限值和耐热 .. 28
10.1 对防灼伤的表面温度限值 ... 28
10.2 绕组的温度 ... 29
10.3 其他温度的测量 ... 29
表 5 爬电距离 .. 21
表 6 基本绝缘的试验电压 ... 22
表 7 外壳底部允许的开孔 .. 26
表 8 最大可获得电流值的限值 28
表 9 过流保护装置 .. 28
表 10 正常条件下的表面温度限值 29
表 11 绕组的绝缘材料 .. 29
表 12 脉冲承受电压 ... 32
表 13 脉冲发生器的输出阻抗 32
表 C.1 污染登记表 .. 39
表 E.1 给出了通过采用附加防护使内部环境污染等级的降低。 46
前言

GB ××××—××××的本部分的全部技术内容为强制性。
GB ××××《工业自动化产品安全要求》分为如下18个部分：
——第1部分：总则；
——第2部分：压力/差压变送器的安全要求；
——第3部分：温度变送器的安全要求；
——第4部分：控制阀的安全要求；
——第5部分：流量计的安全要求；
——第6部分：电磁阀的安全要求；
——第7部分：回路调节器的安全要求；
——第8部分：电动执行机构的安全要求；
——第9部分：数字显示仪表的安全要求；
——第10部分：记录仪表的安全要求；
——第11部分：可编程序控制器的安全要求；
——第12部分：回波测距（TOF）式物位计的安全要求；
——第13部分：磁致伸缩液位计的安全要求；
——第14部分：仪表电源的安全要求；
——第15部分：工业过程测量和控制用信号配电、隔离、转换、报警处理单元的安全要求；
——第16部分：差压流量计的安全要求；
——第17部分：超声流量计的安全要求；
——第18部分：压力仪表辅助装置的安全要求。
本部分为GB ××××的第9部分。
本部分按照GB/T1.1-2009给出的规则起草。
本部分由中国机械工业联合会提出。
本部分由全国工业过程测量和控制标准化技术委员会（SAC/TC 124）、全国测量、控制和实验室电器设备安全标准化技术委员会（SAC/TC338）归口。
本部分起草单位：福建上润精密仪器有限公司、浙江中控自动化仪表有限公司、西南大学、机械工业仪器仪表综合技术经济研究所、南京菲尼克斯电气有限公司、中山市中大自动化有限公司、上海自动化仪表研究所、宁夏银星能源股份吴忠仪表公司、上海自动化仪表股份有限公司、厦门宇电自动化科技有限公司、福建上润精密仪器有限公司。
本部分主要起草人：戈剑、丁云、周雪莲、郑旭、王德忠、闫艳、张宝春、周松明、李佳嘉、王勇、李伟、王竹平、周婷、周宇、戈剑、梅恪、王建华、柳晓菁、王玉敏。
工业自动化产品安全要求
第 9 部分：数字显示仪表的安全要求

1 范围

本部分规定了盘装式数字显示仪表的防电击、防机械危险、耐机械冲击和撞击、防止火焰蔓延、设备的温度限值和耐热的安全要求。

本部分不包括与安全无关的设备的功能、性能或其他特性、运输包装的有效性、电磁兼容（EMC）要求、功能安全、对爆炸环境的防护措施、维修（修理）、维修（修理）人员的防护。

本部分适用于工业过程信号盘装式数字显示仪表（以下简称数显表）。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件，仅注日期的版本适用于本文件。凡是不注日期的引用文件，其最新版本（包括所有的修改单）适用于本文件。

GB/T 3098.1-2010 紧固件机械性能 螺栓、螺钉和螺柱（ISO 898-1：2009，MOD）
GB/T 3098.3-2000 紧固件机械性能 紧定螺钉（idt ISO 898-5:1998）
GB/T 4207-2003 固体绝缘材料在潮湿条件下相比电痕化指数和耐电痕化指数的测定方法（IEC 60112:1979, IDT）
GB 4208-2008 外壳防护等级（IP代码）（IEC 60529:1989, IDT）
GB 4793.1-2007 测量、控制和实验室用电气设备的安全要求 第1部分：通用要求（IEC 60112:1979, IDT）
GB/T 5465.2-2008 电气设备用图形符号 第2部分：图形符号（IEC 60417 DB :2007, IDT）
GB/T 7354-2003 局部放电测量（IEC 61507:2000, IDT）
GB/T 11020-2005 固体非金属材料暴露在火焰源时的燃烧性试验方法清单（IEC 60707:1999, IDT）
GB/T 11021-2007 电气绝缘 耐热性分级（IEC 60085:2004, IDT）
GB/T 12113-2003 接触电流和保护导体电流的测量法（IEC 60990-1:1999, IDT）
GB 14048.1-2006 低压开关设备和控制设备 第1部分：总则（IEC 60947-1：2001，MOD）
GB 14048.3-2008 低压开关设备和控制设备 第3部分：开关、隔离器、隔离开关以及熔断器组合电器（IEC60947-3：2005，IDT）
GB/T 16842-2008 外壳对人和设备的防护 检验用试具（IEC 61032-1:1997, IDT）
GB/T 16927（所有部分） 高压试验技术[IEC 60060（所有部分）]
GB/T 16935.3-2005低压系统内设备的绝缘配合 第3部分：利用涂层、罐封和模压进行防污保护（IEC 60664-3：2003，IDT）
IEC60027（所有部分）电工技术用文字符号（Letter symbols to be used in electrical
technology）

3 术语和定义
GB 4793.1-2007以及下列界定的术语和定义适用于本文件。为了便于使用，以下重复列出了GB 4793.1-2007中的某些术语和定义。

3.1 设备和设备的类别

3.1.1 固定式设备 fixed equipment
固定在支架上的或需另外固定在特定位置上的设备。
[GB 4793.1—2007，定义3.1.1]

3.1.2 永久性连接式设备 permanently connected equipment
以只有用工具才能断开的永久性连接方法与电源电气连接的设备。

3.2 零部件和附件

3.2.1 端子 terminal
为使装置（设备）与外部导体相连而提供的一种元件。
[GB 4793.1—2007，定义3.2.1]
注：端子可以含有一个或几个接触件，因此该术语也包括插座、连接器等。

3.2.2 功能接地端子 functional earth terminal
用来直接与测量电路或控制电路的某一点,或者直接与某个屏蔽部分进行电气连接的,而且预定还要用来为安全目的以外的任何功能目的接地的端子。
注：对测量设备,该端子常被称为测量接地端子。

3.2.3 保护导体端子 protective conductor terminal
为安全目的而与设备的导电零部件相连接的，而且预定还要与外部保护接地系统相连接的端子。

3.2.4 外壳 enclosure
防止设备受到某些外部影响和防止从任何方向直接接触而提供的零部件。
[GB 4793.1—2007，定义3.2.4]

3.2.5 挡板 barrier
防止从任何正常接近的方向直接接触而提供的零部件。
[GB 4793.1—2007，定义3.2.5]
注：外壳和挡板可以提供火焰蔓延的防护[见9.2.1b]。

3.3 电气量值

3.3.1 额定（值） rated(value)
通常由制造厂针对元器件、装置或设备达到某一工作状态而给定的量值。
[IEV 151-04-03]

3.3.2 额定值 rating
一组额定值和工作条件。
[GB 4793.1—2007，定义3.3.2]

3.3.3
工作电压 working voltage
当设备以额定电压供电时，在任何特定的绝缘上能出现的最大交流电压有效值或直流电压值。
注 1: 瞬态值不考虑。
注 2: 开路条件和正常工作条件均要考虑。

3.4 试验
3.4.1 型式试验 type test
针对特定的设计为证明该设计和结构是否能满足本标准的一项或多项要求而对设备的一台或多台样品（或设备零部件）进行的试验。
注：这是对IEV 151-04-15定义的扩充，以便既包括设计要求又包括结构要求。
[GB 4793.1-2007，定义3.4.1]
3.4.2 例行试验 routine test
在制造中或制造后为确定装置（设备）是否符合某个判据而对每一台单独的装置（设备）进行的试验（见附录F）。
[GB 4793.1-2007，定义3.4.2]

3.5 安全术语
3.5.1 （零部件的）可触及 accessible（of a part）
当按6.2的规定能用标准试验指或试验针触及到的。
3.5.2 危险 hazard
潜在的伤害源。
3.5.3 危险带电 hazardous live
在正常条件或单一故障条件下能使之发生电击或电灼伤。
注：对正常条件适用的数值见6.3.1，对在单一故障条件下被认为是适用的更高的数值见6.3.2。
3.5.4 电网电源 mains
设计或使有关设备需要与其连接的、为设备提供电力为目的的低压供电系统。
注：有些测量电路也可以与供货测量目的用的电网电源相连。
3.5.5 电源电路 mains circuit
预定要与电网电源连接的、为设备提供电力的电路。
注：测量电路和利用感应原理从电网电源电路获得供电的电路不属于电网电源电路。
3.5.6 保护阻抗 protective impedance
元器件、元器件的组件或者基本绝缘和限流或限压装置的组合，当其连接在可触及导电零部件与危险带电零部件之间时，其阻抗、结构和可靠性在正常条件和单一故障条件下提供的防护程度达到本标准的要求。
3.5.7
保护连接 protective bonding

为使可触及导电零部件或保护屏与供外部保护导体连接用的装置具有电气连续性而进行的电气连接。

3.5.8
正常使用 normal use

按使用说明或按明显的预期用途的说明进行的操作，包括待机。
注：多数情况下，正常使用也指正常条件，因为使用说明书会警告用户不要在非正常条件下使用设备。

3.5.9
正常条件 normal condition

防止危险的所有防护措施均完好无损的条件。

3.5.10
单一故障条件 single fault condition

防止危险的一个防护措施发生失效的条件或可能引起某种危险而出现一个故障的条件。
注：如果某个单一故障条件会不可避免地引起另一个单一故障条件，则这样的两个故障被认为是一个单一故障条件。

3.5.11
操作人员 operator

按设备的预期用途来操作设备的人。
注：操作人员应为这一目的而接受适当的培训。

3.5.12
责任者 responsible body

负责设备的使用或维护和确保操作人员得到足够培训的个人或组织。

3.5.13
瞬态过电压 transient overvoltage

持续时间仅几毫秒或更短时间的过电压，通常带有强阻尼的振荡或非震荡。

3.5.14
暂态过电压 temporary overvoltage

持续相对较长时间的工频过电压。

3.6 绝缘

3.6.1
基本绝缘 basic insulation

其失效会引起电击危险的绝缘。
[GB 4793.1－2007，定义3.6.1]
注：基本绝缘可用于功能绝缘的目的。

3.6.2
附加绝缘 supplementary insulation

除基本绝缘以外施加的独立的绝缘，用以保证在基本绝缘一旦失效时仍能防止电击。
[GB 4793.1－2007，定义3.6.2]

3.6.3
双重绝缘 double insulation

由基本绝缘和附加绝缘构成的绝缘。
[GB 4793.1－2007，定义3.6.3]
3.6.4 加强绝缘 reinforced insulation

其提供防电击能力不低于双重绝缘的绝缘，它可以由几层不能像附加绝缘或基本绝缘那样单独进行试验的绝缘构成。

[GB 4793.1-2007，定义 3.6.4]

3.6.5 污染 pollution

会导致介电强度或表面电阻率降低的固态、液态或气态（电离气体）的附加的外来物质。

3.6.6 污染等级 pollution degree

为了评价间隔距离而规定的下述微环境的污染等级。

3.6.6.1 污染等级 1 pollution degree 1

无污染或只有干燥的非导电性污染，该污染无不利影响。

3.6.6.2 污染等级 2 pollution degree 2

通常仅有非导电性污染，但偶尔也会由于凝聚作用而短时导电。

3.6.6.3 污染等级 3 pollution degree 3

导电污染或干燥的非导电污染由于凝聚作用而变成导电。

注：在这种情况中，设备通常要防止暴露于直射的日光、降雨、强烈的风压中，但不用控制温度或湿度。

3.6.6.4 污染等级 4 pollution degree 4

由导电性灰尘、雨水或其他潮湿条件引起的持续性导电。

3.6.7 电气间隙 clearance

两个导电零部件在空气中的最短距离。

3.6.8 爬电距离 creepage distance

两个导电零部件沿绝缘材料表面的最短距离。

[GB 4793.1-2007，定义 3.6.8]

3.7 产品有关的定义

3.7.1 盘装仪表

固定安装在仪表盘或平面上使用的仪表。

4 试验

4.1 概述

本部分中的所有试验均是在控制仪表或零部件的样品上进行的型式试验。这些试验的唯一目的是要检验设计和结构是否能确保符合标准要求。

4.2 试验顺序
除本部分另有规定外，试验顺序可以任选。在每项试验后应当仔细对受试变送器进行检查。如果对试验的结果有怀疑，怀疑如果试验顺序颠倒，任何前面的各项试验是否真能通过，则前面的这些试验应当重复进行。如果故障条件下的试验会损坏变送器，则这些试验可以放在基准试验条件下的试验之后。

4.3 基准试验条件

4.3.1 环境条件
除本部分另有规定者外，试验场所应当具有下述环境条件：

a) 温度：15℃～35℃;
b) 相对湿度：不超过 75%，但不超过 1.4d) 的限值;
c) 大气压力：86kPa～106kPa;
d) 无霜冻、凝露、渗水、淋雨和日照等。

4.3.2 数显表状态
除另有规定者外，每项试验应当在组装好的供正常使用的数显表上，且在 4.3.2.1～4.3.2.8 规定的最不利的组合条件下进行。

数显表应按制造厂商说明书的规定进行安装。

4.3.2.1 数显表位置
数显表处于正常使用时的任一位置，且任何通风不受阻挡。

4.3.2.2 附件
由制造厂建议的或提供的、与数显表一起使用的附件和操作人员可更换的零部件应当连接或不连接。

4.3.2.3 盖子和可拆除的零部件
不用工具就能拆除的盖子或零部件应当拆除或不拆除。

4.3.2.4 电网电源
应当符合下面的要求：

a). 供电电源应当在数显表能设置的任何额定供电电压的90%～110%之间，或者如果对数显表规定出要适应更大的电压波动，则供电电压应当达到该波动范围内任何电压；
b). 频率应当为任何额定频率；
c). 交、直流两用数显表应当连接到交流或直流电源上；
d). 使用直流电源或单相电源的数显表应当分别按正常极性连接和相反极性连接；
e). 除了对数显表规定只用于不接地的电网电源外，基准试验电源的一个极应当处于地电位或接近地电位。

4.3.2.5 输入与输出电压
输入和输出电压，包括浮地电压但不包括电网电源电压在内，应当将其调节到额定电压范围内的任何电压上。

4.3.2.6 接地端子
对保护接地端子，如果有，应当接地。功能接地端子应当接地或不接地。

4.3.2.7 连接
数显表应当按其预定用途进行连接或不连接。

4.3.2.8 输出
对于提供电输出的数显表

a) 数显表的工作状态应当能对额定负载提供额定输出功率；
b) 对任何输出，额定负载阻抗应当连接或不连接。

4.4 单一故障条件下的试验

4.4.1 概述
应当按下面要求：
a) 检查数显表及其电路图通常就能判断是否可能引起危险的和因此是否应当实施的故障条件。
b) 除了能证明某个特定的故障条件不可能引起危险外，各项故障试验均应当进行，或者选择检验符合性的规定的替换方法来代替故障试验（见9a）。
c) 数显表应在基准试验条件（见4.3）的最不利的组合条件下工作，对不同的故障，这些组合条件可以有所不同，在进行每一个试验时应当记录这些组合条件。

4.4.2 故障条件的施加
故障条件应当包括4.4.2.1-4.4.2.2规定的故障条件。这些故障条件一次只能施加一个，并应当按任何方便的顺序依次施加，不能同时施加多个故障，除非这些故障是施加某故障后引发的结果。

在每一次施加故障条件后，数显表应当能够通过4.4.2适用的实验。

4.4.2.1 保护阻抗
a) 如果保护阻抗是由元器件的组合来组成的，则应当将每个元器件短路或开路，选择其中较为不利者。
b) 如果保护阻抗是由基本绝缘和限流或限压装置组合来组成的，则基本绝缘和限流或限压装置

这两者均应当承受单一故障条件，一次施加一个故障条件。对基本绝缘应当进行短路，而对

限流或限压装置应当进行短路或开路，选择其中较为不利者。
c) 对保护接地端子，如果有，应当接到大地。功能接地端子应当接地或不接地。

由高完善性元器件组成的保护阻抗的零部件不必将其短路或开路（见6.5.3和14.2）。

4.4.2.2 电源变压器
电源变压器的次级绕组应当按照4.4.2.2.1的规定将其短路，并按4.4.2.2.2的规定将其过载。

在一个试验中损坏的变压器，允许修复或更换后再做一个试验。

4.4.2.2.1 短路
在正常使用时接负载的每一个不带抽头的输出绕组和带抽头输出绕组的每一部分应当依次进行试

验，一次试验一个来模拟负载短路。试验中过流保护装置在位，所有其他绕组接负载或不接负载，选

择正常使用的负载条件较为不利者。

4.4.2.2.2 过载
每一个不带抽头的输出绕组和带抽头输出绕组的每一部分应当依次进行过载试验，一次试验一个。其

他绕组接负载或者不接负载，选择正常使用的负载较为不利者。

在绕组上跨接一个可变电阻器来进行过载试验。电阻器尽可能快的进行调节，如有必要，在1min

后再次进行调节来保持该适用的过载。以后允许不再做进一步的调节。

在所有其他情况下，该过载是从变压器获得的最大输出功率。

4.4.2.3 输出
应当将各个输出短路，一次短路一个。

4.4.2.4 电路和零部件之间的绝缘
在电路和零部件之间，对低于针对基本绝缘规定的量值的绝缘应当将其短路，以检验是否能防止

火焰的蔓延。

4.4.3 试验持续时间

4.4.3.1 概述
应当使数显表一直工作到所施加的故障产生的结果不能再有进一步的变化为止。每项试验一般

限制在1h以内，因为单一故障条件引发的二次故障通常就在那段时间内显现出来。如果有迹象表明最

终可能产生电击、或人身伤害的危险，则试验应当一直继续到出现这些危险为止，或者最长时间为4h，

除非在此之前出现危险。

4.4.3.2 限流装置
如果为限制能易于触及到的零部件的温度而装有在工作时可能切断或限制电流的装置，则不论该装

置是否动作，均应当测量数显表能达到的最高温度。
4.4.3.3 熔断器

如果因熔断器的断开而使某个故障中断，而且如果该熔断器不在约 1s 内动作，则应当测量有关故障条件下流过熔断器的电流。为了确定电流是否达到或超过熔断器的最小动作电流以及更长时间熔断器才动作，应应当利用熔断器的预飞弧时间/电流特性来进行评定。通过熔断器的电流是会随时间而发生变化的。

如果在试验中电流未达到熔断器的最小动作电流，则应当使数显表工作一段对应于最长的熔断时间，或者应当使数显表连续工作 4.4.3.1 规定的时间。

4.4.4 施加故障条件后的符合性

4.4.4.1 概述

在施加单一故障后，通过下面的测量来检验防护是否符合要求：

a) 通过进行 6.3.2 的测量来检验可触及导电零部件是否变成危险带电；
b) 通过对双重绝缘或加强绝缘进行电压试验来检验绝缘是否还有一重保护，电压试验按 6.8 的规定（符合性预处理除外）用对应于基本绝缘的试验电压来进行；
c) 如果电气危险防护是由变压器内的双重绝缘或加强绝缘来实现的，则测量变压器绕组的温度，其温度不得超过表 10 规定的温度。

4.4.4.2 温度

通过测量外壳的外表面或能易于触及的零部件外表面的温度来检验温度防护是否符合要求。零部件的温度在环境温度为 40℃时，或者如果环境温度更高，则在最高额定环境温度时，不得超过 105℃。

该温度是通过测量表面或零部件的升加 40℃，或者如果高于 40℃，则加上最高额定环境温度来确定。

4.4.4.3 火焰蔓延

通过将数显表放在白色薄棉纸包裹的软木表面上，数显表上包上纱布来检验着火蔓延的防护是否符合要求。熔融金属、燃烧的绝缘物、带火焰的颗粒等不得滴落到放置数显表的表面上，而且棉纸或纱布不得碳化、灼热或起火。如果不可能引发危险，则绝缘材料的熔化应当忽略不计。

4.4.4.4 其他危险

按第 7~10 的规定来检验其他危险防护要求是否合格。

5 标志和文件

5.1 标志

5.1.1 概述

数显表上应该标有符合 5.1.2~5.2 规定的标志。

除了内部零部件的标志外，这些标志应当从外部就能看见或者如果盖子或门是预定要由操作人员来拆下来或打开的则在不用工具拆下盖子或打开门后这些标志应当从外部就能看见。适用于整台数显表的标志不得标在操作者不用工具就能拆卸的零部件上。

对机柜安装或面板安装的数显表，标志允许标在数显表从机柜或面板上卸下之后能看见的表面上。量值和单位的文字符号应当符合 IEC60027 的规定，如果适用，图形符号应当符合表 1 的规定。符号无颜色要求。图形符号应当在文件中进行解释。

注 1：如果适用应当使用IEC和ISO规定的符号。
注 2：标志不得标在数显表的底部。
通过目视检查来检验是否合格。

5.1.2 产品标识

产品标识应包括的内

a) 制造厂或供应商的名称或商标；
b) 名称型号和规格。
如果标有相同识别标志（型号）的数显表在一个以上的生产场地制造的，则对每一个生产场地制造的数显表，其标志应当能识别出数显表的生产场地。

注：工厂地点的标志可以采用代码，而且不必标在数显表的外部。
通过目视检查来检验是否合格。

表1 符号

<table>
<thead>
<tr>
<th>序号</th>
<th>符号</th>
<th>标准</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>GB/T 5465.2 (5031)</td>
<td>直流</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>GB/T 5465.2 (5032)</td>
<td>交流</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>GB/T 5465.2 (5033)</td>
<td>交直流</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>三相交流</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>GB/T 5465.2 (5017)</td>
<td>接地端子</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>GB/T 5465.2 (5019)</td>
<td>保护导体端子</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>GB/T 5465.2 (5020)</td>
<td>机箱或机架端子</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>GB/T 5465.2 (5021)</td>
<td>等电位</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>GB/T 5465.2 (5007)</td>
<td>通（电源）</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>GB/T 5465.2 (5008)</td>
<td>断（电源）</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>GB/T 5465.2 (5172)</td>
<td>全部由双重绝缘或加强绝缘保护的单元</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>GB/T 5465.2 (5041)</td>
<td>小心，电击危险</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>ISO 7000</td>
<td>小心，烫伤</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>ISO 7000</td>
<td>小心，危险（见注）</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>GB/T 5465.2 (5268)</td>
<td>双位按钮控制的“按入”状态</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>GB/T 5465.2 (5269)</td>
<td>双位按钮控制的“弹出”状态</td>
</tr>
</tbody>
</table>

注：要求制造商说明在标有该符号的所有情况下都必须查阅文件，见 5.4.1。

5.1.3 电源
数显表应当标有以下信息：
a) 电源性质：“

```
5.1.4 熔断器
对可由操作人员更换的任何熔断器应当在其熔断器座旁标上使操作人员能识别正确更换熔断器的标志。
通过目视检查来检验是否合格。
5.1.5 端子和连接件
如果对安全是有必要的话,则对端子和连接件应当给出其用途的指示。如果没有足够的空间,可以使用表1的符号14。
注1: 对附加信息见IEC60445和IEC60447。
注2: 对多针连接器的各个插针不必进行标志。
5.1.5.1 电源端子和连接件
与电网电源相连的端子应当是能识别的;下列端子应当按下面规定进行标志:
a) 功能接地端子用表1的符号5;
b) 保护接地端子用表1的符号6;
5.1.6 开关和断路器
如果仪表本身不带有开关和断路器，则在仪表的安装说明中要求在仪表柜中安装安全开关和断路器。
5.1.7 用双重绝缘或加强绝缘保护的数显仪表
全部用双重绝缘或加强绝缘保护的数显表应当标上表1的符号11,但装有保护接地端子的数显表除外。只有局部用双重绝缘或加强绝缘保护的数显表不得标上表1的符号11。
通过目视检验是否合格。
5.2 警告标志
如果说明书说明,操作人员可以用工具接触在正常条件下可能是危险带电的零部件,则应当标有警告标志,说明在接触前必需使数显表与危险带电电压隔离或断开危险带电电压。
通过目视来检验是否合格。
5.3 标志的耐久性
数显表的标志在正常使用条件下应保持清晰可辨,并能耐受由制造厂规定的清洁剂的影响,粘贴标牌不得出现松脱或卷边。
通过目视检查,以及通过对外数显表外侧的标志进行下述耐久性试验来检验是否合格。用布沾上规定的清洁剂（或者如果没有规定,则沾上异丙醇）,用手不加过分压力地擦拭30s。
5.4 文件
5.4.1 概述
为了安全目的,应当随同数显表提供含有下述内容的文件:
a) 数显表的预定用途;
b) 技术规范;
5.4.2 数显表额定值

文件应当包含下列信息:

a) 电源电压或电压范围，频率或频率范围，以及功率或电流额定值
b) 所有输入和输出连接的说明
c) 如果外部电路不可触及时，适用于单一故障条件的外部电路绝缘的额定值（见 6.6.2）；
d) 为数显表设计给定的环境条件范围的说明（见 1）；
e) 如果标定了数显表符号 GB4208 时，数显表防护等级的说明。

通过目视检查来检验是否合格。

5.4.3 数显表安装

文件应当包括安装和特定的交付使用的说明，以及如果对安全是必要的，还应当包括在数显表安装和交付使用过程中可能发生的危险警告；

a) 装配、定位和安装要求；
b) 保护接地说明；
c) 与电源的连接；
d) 通风要求；
e) 对任何外部开关或断路器（见 6.10.3.1）和外部过流保护装置（见 9.5）的要求，以及将这些开关或电路断路器设置在数显表近旁的建议。

通过目视来检验是否合格。

5.4.4 数显表操作

如果适用，使用说明应当包括：

a) 操作控制件及其用于各种操作方式的标识；
b) 与数显表和其他附件相连的说明，包括指出适用的附件、可拆卸的零部件和任何专用的材料；
c) 在数显表上使用的与安全有关的符号的解释。

在说明书中应当说明，如果不按照制造厂规定的方法来使用数显表，则可能会损坏数显表所提供的防护。

通过目视来检验是否合格。

5.4.5 数显表维护及故障分析

对责任人为安全目的而需要涉及的预防性维护和检查应当在数显表的说明书中给出足够详细的说明：

制造厂应当规定只能由制造厂或其代理机构才能检查或提供的任何零部件。
对可更换的熔断器的额定值和特性应当作出说明。

通过目视来检验是否合格。

6 防电击

6.1 概述

数显表在正常条件（见 6.4）和单一故障条件（见 6.5）下均应当保持防电击，数显表的可触及零部件不得出现危险带电（见 6.3）。

通过按 6.2 的规定来确定是否可触及零部件以及测量是否达到 6.3 规定的限值，然后通过 6.4-6.11 的试验来检验是否合格。

6.2 可触及零部件的判定
除能明显看出者外，判定零部件是否可触及应当按 6.2.1 的规定来进行。除有规定者外，对试验指（见附录 B）和试验针不得施加作用力。如果用试验指或试验针能接触到这些零部件，或者如果打开不认为是提供适当绝缘（见 6.9.1）的盖子能接触到这些零部件，则认为这些零部件是可触及的。

如果在正常使用时操作员预定会采取使零部件增加可触及性的任何操作（使用或不使用工具），则应当在 6.3.1~6.3.2 的检查前采取这样的操作。这样操作的例子包括：

a) 移开盖子；
b) 打开门；
c) 拆除零部件。

对机柜安装或面板安装的数显表，这种数显表在进行 6.2.1 检查前应当按制造厂说明书的安装好。对这样的数显表，要假定操作人员的位置处于面板的正面。

6.2.1 检查

在每一个可能的位置上施加铰接式试验指。如果通过加力零部件会成为可触及，则施加刚性试验指，同时施加 10N 的力。施加的力要通过试验指的指尖施加，以避免出现楔入或撬开的动作。试验对所有的外部表面进行，包括底部。但是，对能接受插件式模块的数显表，铰接式试验指的指尖仅需插入到离数显表开口处 180mm 的深度。

6.3 可触及零部件的允许限值

在可触及零部件与参考试验地之间，电压、电流、电荷不得超过 6.3.1 正常条件下的限值，也不得超过 6.3.2 单一故障条件下的限值。

6.3.1 正常条件下的值

在正常条件下有关量值大于下列限值即被认为是危险带电。只有当电压值超过 a) 的限值时，才采用 b)和 c)的限值。

a) 当电压限值为有效值 33V 和峰值 46.7V，或者直流值 70V。对规定在潮湿场所使用的控制仪表，电压限值为有效值 16V 和峰值 22.6V，或者直流值 35V。

b) 电流限值为：

1) 当用图 A.1 的测量电路测量时，对正弦波电流为有效值 0.5mA，对非正弦波或混合频率电流为峰值 0.7mA，或者直流值 2mA。如果频率不超过 100Hz，可以用图 A.2 的测量电路。对规定在潮湿场所使用的控制仪表，用图 A.4 的测量电路。

2) 当用图 A.3 的测量电路时，有效值 70mA，这一限值涉及较高频率下可能的灼伤。

c) 电容的电荷限值为 45 μC

6.3.2 单一故障条件下的限值

在单一故障条件下有关量值大于下列限值即被认为是危险带电。只要电压超过 a)的限值，则还要采用 b)和 c)的限值。

a) 电压限值为有效值 55V 和峰值 78V，或者直流 140V；对瞬时电压，其限值为图 2 的规定值，在 50kΩ 电阻器上测量。

b) 电流值为：

1) 当用图 A.1 测量电路测量时，对正弦波电流为有效值 3.5mA，对非正弦波或混合频率电流为峰值 5mA；或者直流 15mA。如果频率不超过 100Hz，可以用图 A.2 测量电路；

2) 当用图 A.3 的测量电路测量时，有效值 500mA，这一限值涉及较高频率下可能的灼伤。

c) 电容量限值见图 1 的规定值。
6.4 正常条件下的防护

应当采用下面一个或一个以上的措施来防止可触及零部件成为危险带电：

a) 基本绝缘（见附录D）；
b) 外壳或挡板；
c) 阻抗。

外壳或挡板应当满足 8.2 的刚度要求。如果外壳或挡板用绝缘来提供防护，则它们应当满足基本绝缘的要求。

可触及零部件与危险带电零部件之间的电气间隙和爬电距离应当满足 6.7 的要求和基本绝缘适用的要求。

可触及零部件和危险带电零部件之间的固体绝缘应当能通过 6.8 对应基本绝缘的电压试验。
如果能通过6.8的介电强度试验，对固体绝缘无最小厚度要求。但是，在机械或热应力条件下，需要考虑第8章、第9章和第10章的要求。固体绝缘的局部放电试验在考虑中。应当采用下面一个或一个以上的措施来防止可触及零部件成为危险带电。

通过下面的测量和试验来检验是否合格：

1) 通过6.2的判断与6.3.2的测量，确定可触及零部件是否危险带电；
2) 按6.7的规定检查或测量电气间隙和爬电距离；
3) 6.8的基本绝缘的介电强度试验；
4) 8.2的外壳和底板的刚性试验。

其中：
- A —— 潮湿条件下的交流限值
- B —— 干燥条件下的交流限值
- C —— 潮湿条件下的直流限值
- D —— 干燥条件下的直流限值

图2 单一故障条件下瞬时可触及电压的短时最大持续时间[见6.3.2a]

6.5 单一故障条件下的防护

应当提供附加防护，以确保在单一故障条件下防止可触及零部件成为危险带电。该附加防护应当由6.5.1~6.5.2规定的一种或多种防护措施组成，或者在出现故障的情况下自动切断电源（见6.5.3）。

按6.5.1~6.5.3的规定检验是否合格。

6.5.1 保护连接
如果在 6.4 规定的初级保护装置出现单一故障的情况下可触及零部件成为危险带电，则可触及导电零部件应当与保护导体端子相连，另一种方法是应用与保护导体端子相连的导电保护屏或挡板将这些可触及零部件与危险带电的零部件隔离。

注：如果用双重绝缘或加强绝缘将可触及零部件与危险带电的零部件隔离，则可触及导电零部件不必与保护导体端子相连。

按 6.5.1.1 的规定检验是否合格。

### 6.5.1 保护连接的完整性

应当采用下列措施保证保护连接的完整性：

a) 保护连接应当由直接的结构件，或独立的导体或者这二者组成。保护连接应当能承受 9.5 规定之一的过流保护装置将数显表从电源上断开之前可能会经受到的所有热应力和电动应力。

b) 对承受机械应力的焊接连接应当采用与焊接无关的方法进行机械固定，这种连接不得用于其他目的，例如固定结构件。螺钉连接件应当紧固防止松动。

c) 如果数显表的某一部分可由操作人员来拆除，则不能使数显表剩余部分的保护连接断开（当数显表的一部分带有对整个数显表的电源输入连接时除外）。

d) 可移动的导电的连接件，例如：铰接件、滑销件等，不得成为唯一的保护连接通路，除非将它们专门设计成供电气互连，并满足 6.5.1.3 的要求。

e) 电缆的外部金属编织物即使与保护导体端子连接也不得认为是保护连接。

f) 如果由电网电源供电的电源通过数显表供其他数显表使用，则还应当采取措施，使保护导体通过该数显表来保护其他数显表。通过该数显表的保护导体通路的阻抗不得超过 6.5.1.3 的规定值。

g) 保护导体可以是裸导体也可以是绝缘导体，绝缘的颜色应当是黄绿色，但下列情况除外：

1) 对接地编织线，可以是黄绿相间的也可以是无色透明的；

2) 对内部保护导体以及和组件中的保护导体端子连接的其他导体，例如带状电缆、汇流排、软印制导线等，如果不可能因保护导体无标识而引起危险，则可以使用任何颜色。黄绿双色组合只能用于识别保护导体，而不得用于其他目的。

注：在一些国家，使用绿色作为保护导体的颜色标识与黄绿双色组合是等效的。

h) 使用保护连接的数显表应当装有符合 6.5.1.2 要求的端子并应当能适用于保护导体的连接。通过目视检查来检验是否合格。

### 6.5.1.2 保护导体端子

保护导体端子应当满足下列要求。

a) 接触表面应当为金属表面；

注：选择保护连接系统的材料要能使端子与保护导体之间或与端子接触的任何其他金属之间的电化学腐蚀减小到最低限度。

b) 器具输入插座的整体式保护导体连接端应当认为是保护导体端子；

c) 对装有可拆线软线的数显表以及对永久连接式数显表，其保护导体端子应当位于电网电源端子的近旁；

da) 如果数显表不需要与电网电源相连，但仍然具有需要保护接地的电路或零部件，则保护导体端子应当位于需保护接地的该电路端子的附近。如果该电路有外部端子，则保护导体端子也应当位于外部；

e) 电网电源电路的保护导体端子其载流能力至少应当与电网电源供电端子的载流能力相当；

f) 组合有其他端子的以及预定要手动连接和断开的插入式保护导体端子，例如电源线的插头和器具耦合器或插入单元的连接器组件，其设计应当使保护导体连接相对于其他连接最先接通和最后断开；
g) 如果保护导体端子还要用于其他连接目的，则应当首先用于连接保护导体，而且固定保护导体应当与其他连接无关，保护导体的连接方式应当确保不可能由于进行不涉及保护导体的维修而将保护导体拆除，或者应当标有警告标志（见 5.2），说明拆除后需要更换保护导体；

h) 如果保护接地端子是一种连接螺钉，则该螺钉应当具有能与连接导体相应的尺寸，但不小于 M3，并至少应当能吻合 3 圈螺纹。保护连接所需的接触压力应当不会由于构成连接部分的材料的变形而减小。

通过目视检查来检验是否合格。还要通过下列试验来检验是否符合 h) 的要求。对金属件上的螺钉或螺母，连接被固定得最不利的接地导体，以及任何配合的导线固定装置的组件，当用表 2 规定的拧紧力矩时，应当能承受 3 次装配和拆卸的操作而不发生机械失效。

<table>
<thead>
<tr>
<th>表 2 螺钉组件的拧紧扭矩</th>
</tr>
</thead>
<tbody>
<tr>
<td>螺钉尺寸 (mm)</td>
</tr>
<tr>
<td>拧紧扭矩 (N•m)</td>
</tr>
</tbody>
</table>

注：螺钉尺寸 3.0mm 的拧紧扭矩依据为紧定螺钉的材料和机械性能国家标准 GB/T3098.1-2000 及 GB/T3098.3-2000

6.5.1.3 保护连接阻抗

保护导体端子与规定要采用保护连接的每一个可触及零部件之间的阻抗不得超过 0.1Ω，电源线的阻抗不构成规定的保护连接阻抗的一部分。

通过施加试验电流 1min，然后计算阻抗来检验是否合格，电流取下列电流值的较大者：

a) 直流 25A 或额定电源频率交流 25A 有效值；
b) 等于数显表额定电流二倍的电流。

如果数显表在电源的所有极上装有过流保护装置，以及如果在单一故障条件下过流保护装置电源一侧的导线不可能变成与可触及导电零部件相连，则试验电流不必大于内部过流保护装置额定电流的二倍。

6.5.2 双重绝缘和加强绝缘

组成双重绝缘或加强绝缘（见附录 D）一部分的电气间隙和爬电距离应当满足 6.7 的适用的要求。见附录 D，外壳应当满足 6.9.2 的要求。

对组成加强绝缘一部分的固体绝缘用应当通过 6.8 的加强绝缘的电压值电压试验。

按 6.7、6.8 和 6.9.2 的规定来检验是否合格。如果可能的话，双重绝缘的两个部分要分开进行试验，否则要作为加强绝缘来进行试验。安全所需的电气间隙和爬电距离可以通过测量来检验。

6.5.3 保护阻抗

为确保在单一故障条件下可触及导电零部件不会成为危险带电，保护阻抗应当是下列规定的一种或一种以上的类型：

a) 一种合适的高完善性单一元器件（见 14.2）；
b) 元器件的组合；
c) 基本绝缘和电路或电压限制装置的组合。

元器件、导线和连接件的额定值应当与正常条件和单一故障条件这两种相适应。

通过目视检查，以及在单一故障条件下（见 4.4.2），通过 6.3 的测量来检验是否合格。

6.5.4 电源的自动断开

如果电源的自动断开被用作单一故障条件下的保护，则该自动断开装置应当满足下列所有要求：

a) 自动断开装置应当随同数显表一起提供或者安装说明书应当规定自动断开要作为设施的的一部分来进行安装；

b) 自动断开装置的额定特性应当规定成能在图 2 规定的时间范围内断开负载

16
c) 自动断开装置的额定值应当与数显表的最大额定负载条件相适应。
通过目视检查自动断开装置的规范，以及如果适用检查安装说明书来检验是否合格。在有怀疑的情况下，通过自动断开装置进行试验来检验其是否在要求的时间范围内断开电源。

6.6 与外部电路的连接

6.6.1 概述
与外部电路的连接应当不会:

a) 在正常条件和单故障条件下使外部电路的可触及零部件变成为危险带电；
b) 或者在正常条件和单故障条件下使数显表的可触及零部件变成为危险带电。

应当通过对电路的隔离来实现保护，除非将电路的隔离短路不可能产生危险。

为达到上述的要求，制造商的说明书或变送器的标志应当按适当情况对每个外部端子给出以下信息:

1) 端子已设计成能保持安全工作的额定条件（最大额定输入/输出电压，连接器特定的型号，已设计的用途等）；
2) 为符合正常条件和单故障条件下端子连接时的电击防护要求，对外部电路要求的绝缘额定值。

按下列方法来检验是否合格:

a) 通过目视检查;
b) 通过 6.2 的判定；
c) 通过 6.3 和 6.7 的测量；
d) 通过 6.8 介强电度试验（但潮湿预处理除外）。

通过目视检查和按 6.2 的规定对可触及零部件的判定来检验是否合格。

6.7 电气间隙和爬电距离

电气间隙和爬电距离在 6.7.1 中作出规定，以使能承受在数显表预定要接入的系统上出现的过电压。对电气间隙和爬电距离也考虑了额定环境条件和数显表中安装的或制造商说明书中要求的保护装置。

对内部无空隙的模制零部件，包括对多层印制电路板的内部各层，没有电气间隙和爬电距离的要求。

通过目视检查和测量来检验是否合格。在确定可触及零部件的电气间隙和爬电距离时，绝缘外壳的可触及表面被认为如同在能用标准试验指（见附录 B）触及到的该可触及表面任何地方包有金属箔那样是导电的。

6.7.1 一般要求

6.7.1.1 电气间隙

电气间隙被规定成要承受可能在电路中出现的，由外部事件（例如雷击或开关过过程）引起的，或者由数显机运行引起的最大瞬态过电压。如果瞬态过电压不可能发生，则电气间隙按最大工作电压来规定。

电气间隙值取决于:

a) 绝缘类型（基本绝缘，加强绝缘等）；
b) 电气间隙的微环境污染等级。

在所有情况下，污染等级 2 的最小电气间隙为 0.2mm。

6.7.1.2 爬电距离

对于两电路之间的爬电距离，要使用施加在两个电路之间的绝缘上的实际工作电压。爬电距离采用线性内插值是允许的。爬电距离始终应当至少等于电气间隙的规定值，如果计算所得的爬行距离小于电气间隙，则爬电距离应当加大到电气间隙的数值。

对其涂层满足 GB/T 16935.3 的 A 类涂层要求的印制线路板，使用污染等级 1 的数值。
对加强绝缘，爬电距离应当是基本绝缘规定值的两倍。就本条而言，材料按其\textit{CTI}（相比漏电起痕指数）值被分为四个组别，如下:

材料组别Ⅰ  \(600 \leq \text{CTI}\)
材料组别Ⅱ  \(400 \leq \text{CTI} < 600\)
材料组别Ⅲa  \(175 \leq \text{CTI} < 400\)
材料组别Ⅲb  \(100 \leq \text{CTI} < 175\)

上面的\textit{CTI}值是指按\textit{GB/T 4207}的规定，在为此目的专门制备的样品上，用溶液A来试验所获得的数值。

对玻璃、陶瓷或其他不产生漏电起痕的无机绝缘材料，爬电距离无需大于其相关的电气间隙。

附录E规定了能用于减小污染等级的方法。

爬电距离按附录C的规定测量

### 表3 电网电源电路的电气间隙和爬电距离

<table>
<thead>
<tr>
<th>相线-中线电压交流有效值或直流值(V)</th>
<th>电气间隙数值/(\text{mm})</th>
<th>爬电距离数值/(\text{mm})</th>
<th>污染等级1</th>
<th>污染等级2</th>
<th>污染等级3</th>
</tr>
</thead>
<tbody>
<tr>
<td>印制线路板</td>
<td>所有材料组别 I</td>
<td>I I I I</td>
<td>I I I I</td>
<td>I I I I</td>
<td>I I I I</td>
</tr>
<tr>
<td>CTI≥100</td>
<td>CTI≥100</td>
<td>CTI≥100</td>
<td>CTI≥100</td>
<td>CTI≥100</td>
<td>CTI≥100</td>
</tr>
<tr>
<td>污染等级1</td>
<td>污染等级2</td>
<td>污染等级3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt;50～≤100</td>
<td>0.1</td>
<td>0.1</td>
<td>0.25</td>
<td>0.16</td>
<td>0.71</td>
</tr>
<tr>
<td>&gt;100～≤150</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.8</td>
<td>1.1</td>
</tr>
<tr>
<td>&gt;150～≤300</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>2.1</td>
</tr>
</tbody>
</table>

注: 所规定的数值是针对基本绝缘或附加绝缘的，对加强绝缘的数值是两倍基本绝缘的数值。

#### 6.8 介电强度试验程序

#### 6.8.1 参考试验地

参考试验地是电压试验的参考点，它是下面的一个或一个以上的零部件，如果是一个以上的零部件则要将他们连接在一起:

a) 任何保护导体端子或功能接地端子；

b) 任何可触及导电零部件，但对因未超过6.3.1的规定值而允许触及的任何带电零部件除外。这种带电零部件要连接在一起，但不构成参考试验地的一部分。

c) 外壳的任何可触及绝缘部分，在除端子以外的每一个地方要包上金属箔。从金属箔到端子的距离要不大于20\(\text{mm}\)，该距离要达到能防止飞弧的最小值；
表4 由电网电源供电的电路的电气间隙

<table>
<thead>
<tr>
<th>工作电压/V</th>
<th>电路电压</th>
<th>电气间隙/mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>交流有效值或直流值</td>
<td>电网电源电压</td>
<td>电网电源电压</td>
</tr>
<tr>
<td></td>
<td>U ≤ 100V</td>
<td>100V &lt; U ≤ 150V</td>
</tr>
<tr>
<td></td>
<td>额定脉冲电压</td>
<td>额定脉冲电压</td>
</tr>
<tr>
<td></td>
<td>500V</td>
<td>800V</td>
</tr>
<tr>
<td>50</td>
<td>0.05</td>
<td>0.12</td>
</tr>
<tr>
<td>100</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td>150</td>
<td>0.10</td>
<td>0.16</td>
</tr>
<tr>
<td>300</td>
<td>0.24</td>
<td>0.39</td>
</tr>
<tr>
<td>600</td>
<td>0.79</td>
<td>1.01</td>
</tr>
<tr>
<td>1200</td>
<td>1.66</td>
<td>1.92</td>
</tr>
<tr>
<td>1250</td>
<td>2.23</td>
<td>2.50</td>
</tr>
<tr>
<td>1600</td>
<td>3.08</td>
<td>3.39</td>
</tr>
<tr>
<td>2000</td>
<td>4.17</td>
<td>4.49</td>
</tr>
<tr>
<td>2500</td>
<td>5.64</td>
<td>6.02</td>
</tr>
<tr>
<td>3200</td>
<td>7.98</td>
<td>8.37</td>
</tr>
<tr>
<td>4000</td>
<td>10.6</td>
<td>10.9</td>
</tr>
<tr>
<td>5000</td>
<td>13.7</td>
<td>14.0</td>
</tr>
<tr>
<td>6000</td>
<td>17.8</td>
<td>18.2</td>
</tr>
<tr>
<td>8000</td>
<td>23.5</td>
<td>23.9</td>
</tr>
<tr>
<td>10000</td>
<td>30.3</td>
<td>30.7</td>
</tr>
<tr>
<td>12500</td>
<td>39.1</td>
<td>39.6</td>
</tr>
<tr>
<td>16000</td>
<td>52.0</td>
<td>52.5</td>
</tr>
</tbody>
</table>

### 6.8.2 潮湿预处理

为确保设备在1.4的潮湿条件下不会产生危险，在6.8.4的电压试验前，设备要进行潮湿预处理，在预处理期间设备不工作。

如果6.8.1要求包上金属箔，则要在完成潮湿预处理和恢复后包上金属箔。

能手动拆除的电气元器件、盖子及其他零部件要拆除，并与主机一起进行潮湿预处理。

预处理要在潮湿箱中进行，箱内空气相对湿度为92.5%±2.5%。箱内空气温度保持在40℃±2℃。

在加湿之前，设备要处在42℃±2℃环境中。通常在进行潮湿预处理前，将其保持在该温度下至少4h。

箱内的空气要搅动，且箱子的设计要使得凝露不致滴落在设备上。

设备在箱内保持48h，取出设备后使其在4.3.1规定的环境条件下恢复2h，非通风设备的盖子要打开。

### 6.8.3 实验的实施

规定的试验要在潮湿处理后恢复时间结束时的1h内进行并完成。实验期间数表不工作。

如果在两个电路之间或某个电路与可触及导电零部件之间彼此是连接在一起的，或彼此是不隔离的，则在它们之间不进行电压试验。

与被试绝缘并联的保护阻抗和限压装置要断开。
在组合使用两个或两个以上保护装置的情况下（见6.5和6.6.1），对双重绝缘和加强绝缘所规定的电压就可能会加在不必承受这些电压的电路零部件上。为了避免出现这种情况，这样的零部件在试验期间可以断开，或者对要求双重绝缘或加强绝缘的电路零部件可以分开进行试验。
<table>
<thead>
<tr>
<th>工作电压,有效值或直流</th>
<th>基本绝缘或附加绝缘</th>
<th>印制线路板上</th>
<th>其他电路</th>
<th>污染等级</th>
<th>污染等级</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>材料组别</td>
<td>材料组别</td>
<td>材料组别</td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>III b</td>
<td>III a</td>
<td>I</td>
<td>II</td>
<td>IIIa-b</td>
</tr>
<tr>
<td>10</td>
<td>0.025</td>
<td>0.04</td>
<td>0.08</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>12.5</td>
<td>0.025</td>
<td>0.04</td>
<td>0.09</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>16</td>
<td>0.025</td>
<td>0.04</td>
<td>0.10</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>20</td>
<td>0.025</td>
<td>0.04</td>
<td>0.11</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>25</td>
<td>0.025</td>
<td>0.04</td>
<td>0.125</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>32</td>
<td>0.025</td>
<td>0.04</td>
<td>0.14</td>
<td>0.53</td>
<td>0.53</td>
</tr>
<tr>
<td>40</td>
<td>0.025</td>
<td>0.04</td>
<td>0.16</td>
<td>0.56</td>
<td>0.80</td>
</tr>
<tr>
<td>50</td>
<td>0.025</td>
<td>0.04</td>
<td>0.18</td>
<td>0.60</td>
<td>0.85</td>
</tr>
<tr>
<td>63</td>
<td>0.040</td>
<td>0.063</td>
<td>0.20</td>
<td>0.63</td>
<td>0.90</td>
</tr>
<tr>
<td>80</td>
<td>0.063</td>
<td>0.10</td>
<td>0.22</td>
<td>0.67</td>
<td>0.95</td>
</tr>
<tr>
<td>100</td>
<td>0.10</td>
<td>0.16</td>
<td>0.25</td>
<td>0.71</td>
<td>1.00</td>
</tr>
<tr>
<td>125</td>
<td>0.16</td>
<td>0.25</td>
<td>0.28</td>
<td>0.75</td>
<td>1.05</td>
</tr>
<tr>
<td>160</td>
<td>0.25</td>
<td>0.40</td>
<td>0.32</td>
<td>0.80</td>
<td>1.1</td>
</tr>
<tr>
<td>200</td>
<td>0.40</td>
<td>0.63</td>
<td>0.42</td>
<td>1.00</td>
<td>1.4</td>
</tr>
<tr>
<td>250</td>
<td>0.56</td>
<td>1.0</td>
<td>0.56</td>
<td>1.25</td>
<td>1.8</td>
</tr>
<tr>
<td>320</td>
<td>0.75</td>
<td>1.6</td>
<td>0.75</td>
<td>1.60</td>
<td>2.2</td>
</tr>
<tr>
<td>400</td>
<td>1.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
<td>2.8</td>
</tr>
<tr>
<td>500</td>
<td>1.3</td>
<td>2.5</td>
<td>1.3</td>
<td>2.5</td>
<td>3.6</td>
</tr>
<tr>
<td>630</td>
<td>1.8</td>
<td>3.2</td>
<td>1.8</td>
<td>3.2</td>
<td>4.5</td>
</tr>
<tr>
<td>800</td>
<td>2.4</td>
<td>4.0</td>
<td>2.4</td>
<td>4.0</td>
<td>5.6</td>
</tr>
<tr>
<td>1000</td>
<td>3.2</td>
<td>5.0</td>
<td>3.2</td>
<td>5.0</td>
<td>7.1</td>
</tr>
<tr>
<td>1250</td>
<td>4.2</td>
<td>6.3</td>
<td>4.2</td>
<td>6.3</td>
<td>9.0</td>
</tr>
<tr>
<td>1600</td>
<td>5.6</td>
<td>8.0</td>
<td>5.6</td>
<td>8.0</td>
<td>11</td>
</tr>
<tr>
<td>2000</td>
<td>7.5</td>
<td>10.0</td>
<td>7.5</td>
<td>10.0</td>
<td>14</td>
</tr>
<tr>
<td>2500</td>
<td>10.0</td>
<td>12.5</td>
<td>10.0</td>
<td>12.5</td>
<td>18</td>
</tr>
<tr>
<td>3200</td>
<td>12.5</td>
<td>16</td>
<td>12.5</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>4000</td>
<td>16</td>
<td>20</td>
<td>16</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>5000</td>
<td>20</td>
<td>25</td>
<td>20</td>
<td>25</td>
<td>36</td>
</tr>
<tr>
<td>6300</td>
<td>25</td>
<td>32</td>
<td>25</td>
<td>32</td>
<td>45</td>
</tr>
<tr>
<td>8000</td>
<td>32</td>
<td>40</td>
<td>32</td>
<td>40</td>
<td>56</td>
</tr>
</tbody>
</table>

注 1: 对高于630V污染等级3的应用场合不推荐材料组别Ⅲb。
注 2: 允许使用爬电距离的内插值。
6. 8. 4 电压试验

进行电压试验要采用表 6 的规定值, 不得出现击穿或重复飞弧。电晕效应和类似现象可忽略不计。对固体绝缘, 交流试验和直流试验是可任选其一的试验方法。绝缘只要通过这两种试验之一即可。在进行试验时, 电压要在 5s 或 5s 以内逐渐升高到规定值, 使电压不出现明显的跳变, 然后保持 5s。

脉冲试验是 GB/T16927 规定 1.2/50 μs 的试验, 每一极性至少三个脉冲, 间隔时间至少 1s。如果是选择交流试验或直流试验, 则对交流试验, 试验的持续时间至少应当为三个周期, 或者对直流试验, 则应当为每一极性 10ms 持续时间的三倍。

双重绝缘或加强绝缘的试验值是表 5 中对基本绝缘试验值的 1.6 倍。

注 1: 在对电路进行试验时, 可能难以将电气间隙的试验和对固体绝缘的试验分开进行。

注 2: 试验变送器的最大试验电流通常要加以限制, 以免试验而发生危险以及由于试验不合格而损坏变送器。

注 3: 设法观察绝缘材料内部的局部放电也许是有效的 (见 GB/T 7354-2003)。

注 4: 试验后要注意释放储存的电能。

表 6 基本绝缘的试验电压

<table>
<thead>
<tr>
<th>电气间隙 (mm)</th>
<th>脉冲试验的峰值电压 (V)</th>
<th>交流电压有效值 (50/60Hz) (V)</th>
<th>交流电压峰值 (50/60Hz) 或直流电压 (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.010</td>
<td>330</td>
<td>230</td>
<td>330</td>
</tr>
<tr>
<td>0.025</td>
<td>440</td>
<td>310</td>
<td>440</td>
</tr>
<tr>
<td>0.040</td>
<td>520</td>
<td>370</td>
<td>520</td>
</tr>
<tr>
<td>0.063</td>
<td>600</td>
<td>420</td>
<td>600</td>
</tr>
<tr>
<td>0.1</td>
<td>806</td>
<td>500</td>
<td>700</td>
</tr>
<tr>
<td>0.2</td>
<td>1140</td>
<td>620</td>
<td>880</td>
</tr>
<tr>
<td>0.3</td>
<td>1310</td>
<td>710</td>
<td>1010</td>
</tr>
<tr>
<td>0.5</td>
<td>1550</td>
<td>840</td>
<td>1200</td>
</tr>
<tr>
<td>1.0</td>
<td>1950</td>
<td>1060</td>
<td>1500</td>
</tr>
<tr>
<td>1.4</td>
<td>2440</td>
<td>1330</td>
<td>1880</td>
</tr>
<tr>
<td>2.0</td>
<td>3100</td>
<td>1690</td>
<td>2400</td>
</tr>
<tr>
<td>2.5</td>
<td>3600</td>
<td>1960</td>
<td>2770</td>
</tr>
</tbody>
</table>

6. 9 防电击保护的结构要求

6. 9. 1 概述

如果发生故障时可能会导致危险, 则应采取下列措施: 

a) 对承受机械应力的导线连接的固定不得仅依靠焊接; 

b) 对固定易拆卸的盖子的螺丝, 若其长度已确定可触及导电零部件与危险带电零部件间的电气间隙或爬电距离, 则该螺丝应是不脱落的螺丝; 

c) 导线、螺钉等的意外松动或脱落不得使可触及零部件成为危险带电。

下列材料不得用来作为安全目的的绝缘: 

1) 容易受到损坏的材料 (如漆, 氧化层, 阳极氧化膜); 

2) 未浸渍的吸湿性材料 (如纸, 纤维制品和纤维材料)。

通过目视检查来检验是否合格。

6. 9. 2 双重绝缘或加强绝缘数显表的外壳

确保外壳与危险带电零部件之间的电气间隙和爬电距离不会因为零部件或导线的松脱而减小到小于对基本绝缘的规定值。
6.9.3 超出量程的指示
如果危险是由于操作人员信赖数显表的显示值（如电压）而引起的，则不论指示值是大于设定的仪表量程的正向最大值，还是小于设定的仪表量程的负向最小值。仪表的显示均应当给出不会使人误解的指示。

6.9.4 插头和连接器
a) 将设备连接到电网电源上的插头和连接器，包括用来连接可拆卸的电源的器具耦合器，均应当符合插头、插座和连接器的相关规范。
b) 如果设备是设计成在正常条件或单一故障条件下仅由低于6.3.2a)规定值的电压供电，或者是用一个电源单独为其供电，则电源线的插头应当不能插入其电压高于设备额定电源电压的电源系统的插座中，电网电源类型的插头和插座不得作为连接电网电源以外的其他用途。
c) 如果软线连接的设备，其插头的插销从内部电容器接收电荷，则在断开电源后5S，插销不得危险带电。

通过目视检查来检验是否合格。对从内部电容器接收电荷的插头，要进行6.3规定的测量，以此来确定是否超过6.3.1c)的规定值。

6.10 供电电源的断开
6.10.1 概述
除6.10.1.1的规定外，不论在数显表的内部还是外部，应当装有使数显表能从每一个供给能量的电源上断开的断开装置。断开装置应当断开所有载流导体。
注：数显表也可以装有用于功能目的的开关或其他断开装置。

6.10.1.1 例外
如果短路或过载不会引起危险，则不需要断开装置。不需要断开装置的例子有：
a) 预定仅连接到有阻抗保护的电源上的设备。这种电源是其阻抗值能确保一旦设备出现过载或短路，设备的供电条件不会超过其额定供电条件且设备不会发生危险的一种电源；
b) 构成阻抗保护负载的设备。这种负载是非分立的过流或热保护的元器件，而是其阻抗能确保一旦该元器件所在的电路出现过载或短路，电路不会超过其额定值的一种元器件。
通过目视检查来检验是否合格，如有怀疑，则设置短路或过载来检验是否会发危险。

6.10.2 按数显表的类型规定的要求
数显表应当采用开关或断路器作为断开装置。
如果开关不是数显表的一部分，则数显表的安装文件应当规定：
a) 开关或断路器应当包含在建筑物的设施中；
b) 开关应当靠近数显表，而且应当是在操作人员易于达到的地方；
c) 开关或断路器的标志应当标注是该数显表用的断开装置。
通过目视检查来检验是否合格。

6.10.3 断开装置
如果断开装置是作为数显表的一部分，则断开装置在电路上应当尽可能靠近电源。对产生功耗的元器件在电路上不得置于电源和断开装置之间。
对电磁干扰抑制电路允许置于断开装置的电源侧。
通过目视检查来检验是否合格。

6.10.3.1 开关和断路器
用作断开装置的开关或断路器应当符合GB14048.1和GB14048.3的有关要求，并应能适用于其适用场合。
如果开关或断路器用作断开装置，则其标志应当能表示出这种功能。如果仅有一个装置（一个开关或一个断路器），则用表 1 的符号 9 和符号 10 即可。

开关不得装在电源线上。
开关或断路器不得断开保护接地导体。
具有作断开用的触点和具有作其他目的用的触点的开关或断路器应当符合 6.6 和 6.7 对电路之间的隔离的要求。
通过目视检查来检验是否合格。

7 防机械危险

在正常条件下或单一故障条件下操作不得导致机械危险。
数显表外壳上所有易于接触到的边缘、凸起物、拐角、开孔、挡板、把手等应当光滑圆润，避免在正常使用数显表时造成伤害。

8 耐机械冲击和撞击

8.1 概述
当数显表承受在正常使用时可能遇到的冲击和碰撞时不得引起危险。数显表应当具有足够的机械强度，元器件应当可靠地固定且电气连接应当是牢固的。
通过进行 8.2 的试验来检验是否合格。试验期间数显表不工作。对不构成外壳一部分的零部件不进行 8.2 的试验。
试验完成后，数显表应当能通过 6.8 的电压试验（但不进行潮湿预处理），并且用目视来检验：
a) 危险带电零部件是否变成可触及；
b) 外壳是否出现可能会引起危险的裂纹；
c) 电气间隙是否小于允许值，内部导线的绝缘是否受到损伤；
d) 是否出现可能会引起火焰蔓延的损坏。
饰面的损坏，不会使爬电距离或电气间隙减小到小于本部分规定值的小凹痕，以及对防电击或防潮不会带来不利影响的小缺口可忽略不计。对不构成外壳一部分的任何零部件的损坏可忽略不计。

8.2 外壳的刚性试验
数显表要牢固地固定在刚性支撑面上并承受 30N 的力，力通过直径 12mm 硬棒上的半球面端部来施加。该硬棒应当施加在当准备使用数显表时其可触及的以及其变形可能会引起危险的外壳的每一分。
如果对非金属外壳在高温下是否能通过本试验有怀疑，则数显表要在 40℃的温度下，或在最高额定温度下（如果该温度更高）工作，直至达到稳定状态后在进行本试验。在进行本试验前要先断开数显表的供电电源。

9 防止火焰蔓延

9.1 概述
在正常条件下或单一故障条件下，火焰不得蔓延到数显表的外面。图 3 是说明符合性检验方法的流程图。
至少采用下列的一种方法来检验是否合格。
a) 进行可能会导致火焰蔓延到数显表外面的单一故障条件（见 4.4）下的试验。试验结果应当满足 4.4.4 的符合性判据；
b) 按 9.2 的规定检验是否消除或减小数显表内的引燃源；
c) 按 9.3 的规定检验能否在一旦出现着火，火焰被控制在数显表内。
注：方法 b) 和 c) 是基于执行了规定的设计准则，相反，方法 a) 则是完全依靠单一故障条件下的试验。
9.2 消除或减少数显表内的引燃源

注：对变送器中不能被划分成限能电路（见9.4）的所有电路被认为是引燃源，在这种情况下采用9a）方法或9c）方法。

就每一个引燃源的引燃危险而言，如果满足下列要求，则认为引燃危险和着火出现率已被减小到允许的水平。

或者1），或者2）

1）按9.4的规定，限制设备的电路或零部件可获得的电压、电流和功率。

按9.4的规定，通过测量受限制的能量值来检验是否合格。

2）不同电位的零部件之间的绝缘满足基本绝缘的要求，或能证明桥接绝缘不会导致引燃。

通过目视检查，如有怀疑，通过试验来检验是否合格。

9.3 一旦出现着火，将火焰控制在数显表内

如果变送器满足下列的结构要求，则认为火焰蔓延到变送器外面的危险已被减小到允许的水平。

变送器和变送器的外壳符合9.3.1的结构要求。

通过目视检查以及按9.3.1的规定来检验是否合格。

9.3.1 结构要求
应当符合下列结构要求。

a) 绝缘导线应当具有相当于 GB/T 11020 规定的 V-1 或更优的可燃性等级。连接器和安装元器件的绝缘材料应当具有 GB/T 11020 规定的 V-2 或更优的可燃性等级。

通过检查有关材料的数据，或对相关零部件的三个样品进行 GB/T 11020 规定的 FV 试验，来检验是否合格。样品可以是下列规定的任何一种样品：
1) 整个零部件；
2) 零部件的截取部分，要包含有壁厚最薄的和有任何通风孔的部分；
3) 符合 GB/T 11020 的样品。

b) 外壳应当符合下列要求：
1) 外壳底部应当无开孔，或应当在图 5 规定的范围内装有符合图 6 规定的挡板；或应当用金属材料制成，开孔符合表 6 的规定，或应当是金属隔离网，其网眼中心距不超过 2mm × 2mm，金属丝直径至少为 0.45mm；
2) 外壳侧面包含在图 6 斜线 C 区域范围不得开孔；
3) 外壳以及任何挡板或挡火板应当用金属（镁除外）材料制成，或者用可燃性等级为 GB/T 11020 规定的 V-1 或更优的非金属材料制成；
4) 外壳以及任何挡板或挡火板应当具有足够的刚性。

通过目视检查检验是否合格。如有怀疑，要求 b) 3) 的可燃性等级按照 a) 中的要求进行检验。

<table>
<thead>
<tr>
<th>最小厚度 (mm)</th>
<th>开孔的最大直径 (mm)</th>
<th>开孔的最小中心距 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.66</td>
<td>1.14</td>
<td>1.70 (233 个孔/645 mm²)</td>
</tr>
<tr>
<td>0.66</td>
<td>1.19</td>
<td>2.36</td>
</tr>
<tr>
<td>0.76</td>
<td>1.15</td>
<td>1.70</td>
</tr>
<tr>
<td>0.76</td>
<td>1.19</td>
<td>2.36</td>
</tr>
<tr>
<td>0.81</td>
<td>1.91</td>
<td>3.18 (72 个孔/645 mm²)</td>
</tr>
<tr>
<td>0.89</td>
<td>1.90</td>
<td>3.18</td>
</tr>
<tr>
<td>0.91</td>
<td>1.60</td>
<td>2.77</td>
</tr>
<tr>
<td>0.91</td>
<td>1.98</td>
<td>3.18</td>
</tr>
</tbody>
</table>

![图 4 挡板](image)
被认为是危险着火源的数显表的零部件和元器件。如果它是未另外防护的，或者是用其外壳进行
局部防护的元器件的未防护部分，则该零部件和元器件包括数显表的整个零部件和元器件。

A —— A 的轮廓线在水平面上的投影。
C —— 斜线，用来划出结构要符合 9.2.1b)1)和 9.2.1b)2)规定的外壳底部和侧面的最小区域。该斜线围
绕 A 的周边的每一点，以及相对于垂直呈 5°夹角投射，其取向要确保能划出最大的面积。

B —— 结构要符合 9.2.1b)1)规定的底部的最小区域。

图 5 结构要符合 9.2.1b)1)规定的外壳底部的区域

9.4 限能电路

限能电路是符合下列所有判据的电路:
  a） 出现在电路中的电位不大于 30V 有效值和 42.4V 峰值，或者直流 60V；。
  b） 用下列之一的方法来限制能出现在电路中的电流:
      1) 由自身限制或用阻抗限制最大可获得电流，使其不会超过表 8 的相关规定值;
      2) 用符合表 9 规定的过流保护装置限制电流;
      3) 用调节网络限制最大可获得电流，使其在正常条件下或在调节网络中出现的单一故障条件
          下不会超过表 8 的相关规定值。
  c） 至少采用基本绝缘与会产生超过上述判据 a)和 b)的能量值的其他电路隔离。
如果使用过流保护装置，则该过流保护装置应当是某种熔断器或某种不可调的非自复位机电装置。
通过目视检查，以及在下列条件下，通过测量出现在电路中的电位，最大可获得电流来检验是否合格：
1）在使电压达到最大的负载条件下测量出现在电路中的电位；
2）加上能产生最大电流值的阻性负载（包括短路），在工作 60s 后测量输出电流。
### 表8 最大可获得电流值的限值

<table>
<thead>
<tr>
<th>开路输出电压 UV</th>
<th>最大可获得电流/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC 有效值</td>
<td>DC</td>
</tr>
<tr>
<td>$U \leq 20$</td>
<td>$U \leq 20$</td>
</tr>
<tr>
<td>$20 &lt; U \leq 30$</td>
<td>$20 &lt; U \leq 30$</td>
</tr>
<tr>
<td>$30 &lt; U \leq 60$</td>
<td></td>
</tr>
</tbody>
</table>

注：峰值适用于非正弦波形的交流电和纹波超过 10% 的直流电。

### 表9 过流保护装置

<table>
<thead>
<tr>
<th>出现在电路中的电位 UV</th>
<th>过流保护装置在不大于120s 后断开的电流/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC 有效值</td>
<td>DC</td>
</tr>
<tr>
<td>$U \leq 20$</td>
<td>$U \leq 20$</td>
</tr>
<tr>
<td>$20 &lt; U \leq 30$</td>
<td>$20 &lt; U \leq 60$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注 1: 峰值适用于非正弦波形的交流电和纹波超过 10% 的直流电。

注 2: 该评估值是基于所规定的保护装置的时间-电流特性，与额定分断电流是有区别的（例如 ANS I / UL 248-14 的 5A 熔断器，规定为 10A 和 10A 以下在 120s 熔断，而 GB 9364 的 T 型 4A 熔断器，规定为 8.4A 和 8.4A 以下在 120s 熔断。

注 3: 熔断器的分断电流与温度有关，如果熔断器的环境温度明显高于室温，则温度的影响就必须加以考虑。

9.5 过流保护

预定要由电网电源供电的或与电网电源相连的数显表应安装熔断器，断路器、热切断器、阻抗限制电路或类似装置来进行保护，防止数显表出现故障时从电网获得过大的能量。这种保护是要限制故障的进一步发展以及着火和火焰蔓延的可能性。过流保护装置也能在故障情况下提供防电击保护。

过流保护装置不得装在保护导线上，熔断器或单极断路器不得装在多相设备的中线上。

注 1: 过流保护装置（例如熔断器）最好要装在所有供电导线上。如果使用多个熔断器作过流保护装置，则熔断器应彼此靠近安装，这些熔断器应当具有相同的额定值和特性。过流保护装置，包括电源开关最好要装在数显表中的电网电源电路的供电一侧。

注 2: 在某些数显表中，可能需要对过流保护装置的动作进行检测和指示。

数显表中的过流保护装置是可以任选的，如果不安装过流保护装置，则制造商说明书应当规定在数显表预期使用的装置中要求提供过流保护装置。

通过目视检查来检验是否合格。

10 设备的温度限值和耐热

10.1 对防灼伤的表面温度限值

在 40℃的环境温度或最高额定环境温度下（如果温度更高），易接触表面的温度在正常条件下不得超过表 10 的规定值，或在单一故障条件下不得超过 105℃。
表10 正常条件下的表面温度限值

<table>
<thead>
<tr>
<th>零部件</th>
<th>限值/℃</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 外壳的外表面</td>
<td></td>
</tr>
<tr>
<td>a) 金属的</td>
<td>70</td>
</tr>
<tr>
<td>b) 非金属的</td>
<td>80</td>
</tr>
<tr>
<td>c) 正常使用是不可能被接触的小区域</td>
<td>100</td>
</tr>
<tr>
<td>2. 旋钮和手柄</td>
<td></td>
</tr>
<tr>
<td>a) 金属的</td>
<td>55</td>
</tr>
<tr>
<td>b) 非金属的</td>
<td>70</td>
</tr>
<tr>
<td>c) 在正常使用时仅被短时间握持的非金属零部件</td>
<td>85</td>
</tr>
</tbody>
</table>

在正常使用条件下和在 4.2.2 的适用的单一条件下, 以及在由于温度过高可能导致危险的任何其他单一故障条件下，按 10.4 的规定通过测量，以及通过目视检查防护装置是否能防止意外接触表面，温度是否超过表 10 的规定值和是否不用工具就不能拆下来检验是否合格。

10.2 绕组的温度

如果因温度过高可能导致危险，则绕组绝缘材料的温度在正常条件下或单一故障条件下不得超过表 11 的规定值。

表11 绕组的绝缘材料

<table>
<thead>
<tr>
<th>绝缘等级(见 GB/T11021)</th>
<th>正常条件℃</th>
<th>单一故障条件℃</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>105</td>
<td>150</td>
</tr>
<tr>
<td>B</td>
<td>130</td>
<td>175</td>
</tr>
<tr>
<td>E</td>
<td>120</td>
<td>165</td>
</tr>
<tr>
<td>F</td>
<td>155</td>
<td>190</td>
</tr>
<tr>
<td>H</td>
<td>180</td>
<td>210</td>
</tr>
</tbody>
</table>

10.3 其他温度的测量

就其他条款而言，如果适用，则要进行下列其他温度的测量。除另有规定者外，试验要在正常使用条件下进行。

a) 在进行 10.5.1 的试验时，测量非金属外壳的温度（建立非 10.5.2 的试验用的基础温度）。

b) 用来支撑与电网电源连接的，且用绝缘材料制成的零部件的温度（建立非 10.5.3 的试验用的温度）。

10.4 温度试验的实施

数显表应当在基准试验条件下进行试验。除了另行规定特殊的单一故障条件下外，要遵守制造厂说明书有关通风的规定。

最高温度可以通过在基准试验条件下测量温升，然后将该温度升加加上 40℃，或者加上最高额定环境温度（如果温度更高）来确定。

绕组绝缘材料的温度通过测量绕组线的温度和与绝缘材料接触的铁芯片的温度来确定。可以采用电阻法来测量温度，也可以采用温度传感器来测量温度。温度传感器的选择和放置要使其对绕组温度的影响可忽略不计。如果绕组是不均匀的，或者测量电阻有困难，则要采用后者的测量方法。

温度要在达到稳定时测量。

试验时，数显表要使用涂上无光黑色涂料的胶合板，按安装说明书的规定进行安装，当设备是要在机柜的板壁上安装时，胶合板厚度约 10mm。
GB ××××.9—××××

10.5 耐热

10.5.1 电气间隙和爬电距离的完整性

当数显表在环境温度 40℃或最高额定环境温度（如果温度更高）下工作时，其电气间隙和爬电距离应当符合 6.7 的要求。

如果对数显表是否产生大量的热量有怀疑，则要使数显表在 4.3 的基准试验条件下，但环境温度为 40℃或最高额定环境温度（如果温度更高），通过数显表来进行检验。在本试验后，电气间隙和爬电距离不得减小到小于 6.7 的要求值。

如果外壳是非金属材料的，则要在上述为 10.4 的目的而进行试验时测量外壳零部件的温度。

10.5.2 非金属外壳

非金属材料的外壳应当能耐高温。

在经过下列之一的处理后，通过试验来检验是否合格。

a）非工作处理。数显表不通电，在 70℃±2℃或在比 10.5.1 的试验时测得的温度高 10℃±2℃的温度下（取其较高的温度）贮存 7h。如果数显表装有这种处理方法可能会受到损坏的元件，则可以对空外壳进行处理，然后在处理结束时装好数显表。

b）工作处理。数显表在 4.1.1 的试验条件下工作，但环境温度要比 40℃高 20℃±2℃，或比最高额定环境温度（如果高于 40℃）高 20℃±2℃。

在经过处理后，危险带电零部件不得成为可触及，数显表应当能通过 8.1 的试验，以及如有怀疑，则再另外进行 6.8 的试验（但不进行潮湿预处理）。

10.5.3 绝缘材料

绝缘材料应当有适当的耐热能力。

对用来支撑与电网电源连接的且用绝缘材料制成的零部件，应当采用数显表内一旦发生短路而不会导致危险的绝缘材料制成。

在有怀疑的情况下，通过检查材料的数据来检验是否合格。如果材料数据不能令人确信，则要进行下列之一的试验。

1) 采用至少 2.5mm 厚的绝缘材料样品，用图 6 的试验装置来进行球压试验。试验在加热箱内进行，箱内温度为按 10.3a）或 10.3b）的规定测得的温度±2℃，或 125℃±2℃，取其较高的温度。对被试零部件的支撑要确保使其上表面呈水平状态，然后使试验装置的球面部分以 20N 的力压在该表面上。1h 后取下试验装置，并将样品浸入冷水中，使样品在 10s 内冷却到接近室温。由球体引起的压痕的直径不得超过 2mm。

2) GB/T 1633 的方法 A 的维卡软化试验。维卡软化温度至少应当为 130℃。
11 防液体危险

防液体危险的要求不适用于本部分。

12 防辐射（包括激光源）、声压力和超声压力

防辐射（包括激光源）、声压力和超声压力的要求不适用于本部分。

13 对释放的气体、爆炸和内爆的防护

对释放的气体、爆炸和内爆的防护的要求不适用于本部分。

14 元器件

14.1 概述

如果涉及安全，则元器件应当按其规定的额定值使用，除非已作出特定的例外规定。元器件应当符合下列之一的要求：

a) 某个相关的国家标准或 IEC 标准的适用的安全要求，不要求符合该元器件标准的其他要求。如果对应用有必要，则元器件应当承受本部分的试验，但不需要再进行已在检验元器件标准符合性时完成的等同或等效的试验。

b) 本部分的要求，以及如果对应用有必要，相关的国家标准或 IEC 元器件标准任何附加的适用的安全要求。

c) 本部分的要求，如果无相关的国家标准或 IEC 标准。

d) 某个非国家标准或 IEC 标准的适用的安全要求。这些适用的安全要求至少要与相关的国家标准或 IEC 标准的适用的安全要求相当，只要该元器件已由经认可的检测机构按该非国家标准或 IEC 标准获得批准即可。

注：即使试验采用非国家标准或IEC标准，只要试验已由经认可的检测机构完成并确认符合适用的安全要求就无需重新进行试验。

14.2 高完善性元器件

如果在单一故障条件下，某个元器件的短路或开路可能会引起危险，例如数显表中连接到供电网络，并且对数显表供电的主回路中的元器件（如电容、电阻、熔断器等）则应该使用高完善性元器件。高完善性元器件的结构、尺寸和试验均应当符合适用的国家标准或 IEC 标准，以确保预期应用的安全和可靠。就本部分的安全要求而言，高完善性元器件可以认为是无故障的元器件。

注：这样的要求和试验的例子有：

图 6 球压试验装置

1——被试部分；
2——试验装置的球形部分；
3——支撑件

注：即使试验采用非国家标准或IEC标准，只要试验已由经认可的检测机构完成并确认符合适用的安全要求就无需重新进行试验。
a) 进行适用于双重绝缘和加强绝缘的介电强度试验；
b) 按至少两倍功率选取尺寸（电阻器）；
c) 进行气候试验和耐久性试验以确保数显表预期寿命期间的可靠性；
d) 对电阻器进行浪涌试验，见 GB8898.
e) 利用在真空、气体或半导体中电子传导的单个电子装置不认为是高完善性元器件。通过进行相关的试验来检验是否合格。

14.3 印制线路板
印制线路板应当采用可燃性等级为 GB/T11020 的 FV-1 或更优的材料。

14.4 用作瞬态过压限制装置的电路和元器件
如果在数显表内采取对瞬态过压进行抑制的措施，则任何过压限制元器件或电路应当承受表 12 中适用的脉冲承受电压，10 个正极性脉冲和 10 个负极性脉冲，脉冲间隔时间最长为 1min。脉冲由 1.2/50 \, \mu s 脉冲发生器（见 GB/T16927）产生。该脉冲发生器应当产生 1.2/50 \, \mu s 的开路电压波形和 8/20\, \mu s 的短路电流波形，且输出阻抗（峰值开路电压除以峰值短路电流）应当符合表 13 的规定。

<table>
<thead>
<tr>
<th>电网电源标称相线-中线电压/V (交流或直流)</th>
<th>规定的脉冲承受电压/V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>II</td>
</tr>
<tr>
<td>50</td>
<td>500</td>
</tr>
<tr>
<td>100</td>
<td>800</td>
</tr>
<tr>
<td>150</td>
<td>1500</td>
</tr>
<tr>
<td>300</td>
<td>2500</td>
</tr>
<tr>
<td>600</td>
<td>4000</td>
</tr>
<tr>
<td>1000</td>
<td>6000</td>
</tr>
</tbody>
</table>

表 12 脉冲承受电压

<table>
<thead>
<tr>
<th>测量类别</th>
<th>输出阻抗/Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>III 和 IV</td>
<td>2</td>
</tr>
<tr>
<td>II</td>
<td>12 (见注)</td>
</tr>
</tbody>
</table>

注：可以在较低阻抗的发生器上串联电阻，使阻抗增加到该相应的数值。

14.5 电源变压器
电源变压器的次级绕组应当按 1)短路的规定将其短路，并按 2)过载的规定使其过载。在一个试验中损坏的变压器，允许修复或更换后再作下一个试验。

1) 短路
在正常使用时接负载的每一个不带抽头的输出绕组和带抽头输出绕组的每一部分应当依次进行试验，一次试验一个来模拟负载短路。试验中过流保护装置保持在位，所有其他绕组接负载或不接负载，选择正常使用的负载条件中较为不利者。

2) 过载
每一个不带抽头的输出绕组和带抽头的输出绕组的每一部分应当依次进行过载试验，一次试验一个。其他绕组接负载或不接负载，选择正常使用的负载中较为不利者。如果在 4.4 的故障条件试验时出现任何过载，则各次级绕组应当承受那些过载。
在绕组上跨接一个可变电阻器来进行过载试验。电阻器尽可能快地进行调节，如有必要，在 1min
后再次进行调节来保持该适用的过载。以后允许不再作进一步的调节。

如果用电流断路装置来提供保护，则过载试验电流为过流保护装置刚好能导通 1h 的最大电流。试验前，保护装置用可以忽略阻抗的连接来代替。如果该试验电流值不能从保护装置的规范中获得，则要通过试验来确定。

对设计成当达到规定的过载时输出电压即消失的数显表，过载要缓慢地增加，达到刚好在引起输出电压消失的该过载点靠前的一个过载点。

在所有的其他情况下，该过载是从变压器能获得的最大输出功率。

14.6 熔断器座

对装有预定要由操作人员来更换熔断器的熔断器座，在更换熔断器时应当不能触及到危险带电零部件。

通过用铰接式试验指（见图 B.2）在不施加力的情况下进行试验来检验是否合格。
附 录 A
（规范性附录）

接触电流的测量电路

（见 6.3）

注：本附录是以GB/T 12113 规定的测量接触电流的程序为基础的，该标准也规定了测试电压表的特性。

A.1 频率小于或等于 1MHz 的交流和直流的测量电路

用图 A.1 的电路测量电流，并用下面公式计算：

\[ I = \frac{U}{500} \]

式中：
I——电流，单位为安培 (A)；
U——电压表指示的电压，单位为伏特 (V)。

该电路代表人体阻抗和补偿人体生理反应随频率的变化。

A.2 频率小于或等于 100Hz 的正弦交流和直流的测量电路

当频率不超过 100Hz 时，用图 A.2 的任一电路测量电流，当用电压表时，电流由下式计算：

\[ I = \frac{U}{2000} \]

式中：
I——电流，单位为安培 (A)；
U——电压表指示的电压，单位为伏特 (V)。
该电路代表频率不超过 100Hz 时的人体阻抗。
注: 2000Ω的阻值包括测量仪表的阻抗。

图 A.2 频率小于或等于 100Hz 的正弦交流和直流测量电路

A.3 高频电灼伤电流的测量电路

用图 A.3 的电路测量电流, 并按下式计算:

\[ I = \frac{U}{500} \]

式中:
I——电流，单位为安培（A）;
U——电压表指示的电压，单位为伏特（V）。
该电路补偿高频对人体生理反应的影响。

图 A.3 电灼伤电流测量电路

A.4 潮湿接触电流的测量电路

用图 A.4 的电路测量潮湿接触电流，并按下式计算:

\[ I = \frac{U}{500} \]

式中:
GB ×××.9—×××

电流，单位为安培（A）；电压表指示的电压，单位为伏特（V）。该电路代表无皮肤接触电阻的人体阻抗。

R1=375Ω
R2=500Ω
C1=0.22μF

图 A.4 潮湿接触电流的测量电路
附录 B
（规范性附录）

标准试验指
（见 6.2）

指尖的尺寸和公差见图 B.2。

图 B.1 刚性试验指（GB/T 16842 的试具 11）

单位为毫米
1——绝缘材料；
2——AA剖面；
3——BB剖面；
4——手柄；
5——档板；
6——球形；
7——细节X（示例）；
8——侧视图；
9——所有边缘倒角
未规定公差的尺寸的公差为：
——对角度：\(10^\circ\)
——对线性尺寸：
\(\leq 25\text{mm} \quad \text{时：} \quad 0.05\text{mm}\)
\(\quad \text{＞} 25\text{mm} \quad \text{时：} \quad \pm 0.2\text{mm}\)
试验指材料：经过热处理的钢材等。
该试验指的两个关节可以弯曲\((90^\circ)\)\(^{\circ}\)但是只可以在同一平面内弯曲。

为了使弯曲角度限制在 \(90^\circ\)。采用销和槽的解决办法仅仅是各种可能解决的途径之一。由于这一原因，所以图中未给出这些细节的尺寸和公差。实际设计应当保证 \((90^\circ)\) 的弯曲角。

图 B.2 铰接式试验指（GB/T 16842 的试具 B）
附录 C
（规范性附录）

电气间隙和爬电距离的测量

例 1 至例 11 中规定的、适用于各种实例的沟槽宽度 X 按不同的污染等级规定如下。

下面的例子中规定的尺寸 X 有一个最小值，取决于表 C.1 给出的污染等级。

表 C.1 污染等级表

<table>
<thead>
<tr>
<th>污染等级</th>
<th>尺寸 X 最小值/mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

如果所涉及的电气间隙小于 3mm，则最小尺寸 X 可减小到该电气间隙的三分之一。

测量电气间隙和爬电距离的方法在下面例 1 至例 11 中说明。这些例子不区分裂缝和沟槽也不区分绝缘的类型。

需要做出以下一些假定：

a) 如果跨越沟槽的宽度大于或等于 X，爬电距离要沿沟槽的轮廓线进行测量（见例 2）。

b) 假定任何凹槽桥接有一段长度等于 X 的绝缘连杆，而且桥接在最不利的位置（见例 3）。

c) 在相互间能处于不同位置的零部件之间测量电气间隙和爬电距离时，要在这些零部件处于最不利的位置测量。

例 1 所测量的路径包含一条任意深度，宽度小于 X、槽壁平行或收敛的沟槽。

直接跨沟槽测量爬电距离和电气间隙。

例 2 所测量的路径包含一条任意深度，宽度等于或大于 X、槽壁平行的沟槽。

电气间隙就是“视线”距离，爬电距离是沿沟槽轮廓线伸展的通路。
例 3 所测量的路径包含一条宽度大于 X 的 V 形沟槽。
电气间隙就是“视线”距离。
爬电距离是沿沟槽轮廓线伸展的通路，但沟槽底部用长度为 X 的连杆“短接”。

例 4 所测量的路径包含一根肋条。
电气间隙是越过肋条顶部最短直达空间通路。爬电距离是沿肋条轮廓线伸展的通路。

例 5 所测量的路径包含一条未粘合的接缝，该接缝的两侧各有一条宽度小于 X 的沟槽。
爬电距离和电气间隙是如图所示的“视线”的距离。

例 6 所测量的路径包含一条未粘合的接缝，该接缝的两侧各有一条宽度大于或等于 X 的沟槽。
电气间隙是“视线”的距离。
爬电距离是沿沟槽轮廓线伸展的通路。
例 7 所测量的路径包含一条未粘合的接缝，该接缝的一侧有一条宽度小于 X 的沟槽，另一侧有一条宽度等于或大于 X 的沟槽。
爬电距离和电气间隙如图所示。

例 8 通过未粘合接缝的爬电距离小于越过挡板的爬电距离。
电气间隙是越过挡板顶部最短直达空间距离。

例 9 由于螺钉头与凹槽槽壁之间的空隙太窄，所以不必考虑该空隙。
例 10 由于螺钉头与凹槽槽壁之间的空隙足够宽，所以必须考虑该空隙。当该空隙的距离等于 X 时，爬电距离的测量值就是从螺钉到槽壁的距离。

例 11 C 为一浮地零部件。电气间隙和爬电距离 d+D。

图 C.1 电气间隙和爬电距离测量方法的例子
附录 D
（规范性附录）

其间规定绝缘要求的零部件
（见 6.4 和 6.5.2）

下列符号在图 D.1 至 D.3 中用来表示：

a) 要求：
   B 要求基本绝缘；
   D 要求双重绝缘和加强绝缘。

b) 电路和零部件：
   A 与保护导体端子不连接的可触及零部件；
   H 正常条件下是危险带电的电路；
   N 正常条件下不超过 6.3.2 限值的电路；
   R 与基本绝缘组合形成保护阻抗的高阻抗[见 6.5.3b) ];
   S 保护屏；
   T 可触及的外部端子；
   Z 次级电路的阻抗。

所给出的次级电路也可以被认为只是零部件。

图 D.1a) 至 d) 危险带电电路与正常条件下不超过 6.3.2 限值且具有可触及零部件的外部端子的电路之间的防护
图 D.1e) 至 h) 危险带电电路与正常条件下不超过 6.3.2 限值且具有外部端子的其他电路之间的防护

不与其他可触及零部件相连的可触及零部件

图 D.2a) 和 b) 不与其他可触及零部件相连的可触及件对内部危险带电电路的防护

不与其他可触及零部件相连的可触及零部件

图 D.2c) 和 d) 正常条件下不超过 6.3.2 限值的次级电路的可触及端子对初级危险带电电路的防护

注：图D.2c)和D.2d)所示的电路也可以有其他防护措施，例如保护屏、电路保护连接（见6.5.1）和保护阻抗（见6.5.3）。
图 D.3 两个危险带电电路的外部可触及端子的防护

注：未与保护导体端子连接的可触及零部件和两个危险带电电路中任一电路之间的绝缘要求如图 D.1a）至 D.1d）所示。

X 的试验电压按下面最严酷的一种情况来确定：

B（基本绝缘）—如果危险带电电路 H1 和危险带电电路 H2 两者是已连接好的，则试验电压根据电路之间的绝缘所承受的最高额定工作电压来确定；

D（双重绝缘）—如果危险带电电路 H1 是已连接好的，危险带电电路 H2 的端子在进行连接时又是可触及的，则试验电压根据危险电路 H1 的绝缘所承受的最高额定工作电压来确定；

D（双重绝缘）—如果危险带电电路 H2 是已连接好的，危险带电电路 H1 的端子在进行连接时是可触及，则试验电压根据危险电路 H2 的绝缘所承受的最高额定工作电压来确定。
附录 E
（规范性附录）

污染等级的降低

表 E.1 给出了通过采用附加防护使内部环境污染等级的降低。

<table>
<thead>
<tr>
<th>附加防护</th>
<th>从外部环境污染等级 2 降至</th>
<th>从外部环境污染等级 3 降至</th>
</tr>
</thead>
<tbody>
<tr>
<td>采用 GB 4208 的 IPX4 外壳</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>采用 GB 4208 的 IPX5 或 IPX6 外壳</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>采用 GB 4208 的 IPX7 或 IPX8 外壳</td>
<td>2（见注）</td>
<td>2（见注）</td>
</tr>
<tr>
<td>采用气密密封的外壳</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>采用连续加热</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>采用密封</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>采用使用涂层</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

注：如果设备制造时已确保其内部是低湿度的，且说明书又规定，在打开外壳后再次合上外壳时，必须在湿度受控的环境中进行或者必须使用干燥剂，则污染等级就能降至 1 级。
附 录 F
(规范性附录)

例 行 试 验

制造商对其生产的带有危险带电零部件和可触及导电零部件的设备应当 100% 的进行第 F.1～F.3 章的试验。

除非能清楚地表明其试验结果在后续的制造阶段是有效的，否则应当使用完全组装好的设备来进行试验。进行试验时不得拆除设备电线、改装或拆开设备，但是如果扣式盖子和摩擦紧固的旋钮对试验有影响，则应当将其拆下。设备在试验期间不得通电，但其电源开关应当置于通位。

设备不需要包上金属箔，也不需要进行潮湿预处理。

F.1 保护接地

在一端为器具输入插座的接地插销或插头连接式设备的电源插头的接地插销、或者永久性连接式设备的保护导体端子，以及另一端为 6.5.1 要求与保护导体端子相连的所有可触及导电零部件之间进行接地连续性试验。

注：对试验电流值不作规定。

F.2 电网电源电路

在一端为连接在一起的电网电源端子，以及另一端为连接在一起的所有可触及导电零部件之间，施加 6.8 规定的（进行潮湿预处理）对应于基本绝缘的试验电压。就本标准而言，预定要与其他设备的非带电的电路相连的任何输出端子的接触件被认为是可触及导电零部件。

试验电压应当在 2s 内升至规定值，并至少保持 2s。

不得出现击穿或重复的飞弧，不考虑电晕效应和类似现象。

F.3 其他电路

在一端为连接在一起的在正常工作时能成为危险带电的浮地输入电路的端子，以及另一端为连接在一起的可触及导电零部件之间施加试验电压。

还要在一端为连接在一起的在正常使用时能成为带电的浮地输出电路的端子，以及另一端为连接在一起的可触及导电零部件之间施加试验电压。

对每一种情况施加的电压值为工作电压的 1.5 倍。如果电压限制（箝位）装置在低于 1.5 倍的工作电压下动作，则施加的电压值为 0.9 倍的箝位电压，但不小于工作电压。

注： 在具有与保护导体端子相连的可触及导电零部件的设备中，可触及导电零部件是能与器具输入插座的接地插销或电源插头的接地插销相连的，在进行试验时，要将设备与任何外部接地装置进行电气隔离。

不得出现击穿或重复的飞弧，不考虑电晕效应和类似现象。